Number 3

WINTER 2016
$?$

ROMANIAN MATHEMATICAL MAGAZINE

SOLUTIONS

Founding Editor DANIEL SITARU

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

SOLUTIONS

RM M WINTER EDITION 2016

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Proposed by

Daniel Sitaru - Romania
Nguyen Viet Hung - Hanoi - Vietnam, Andrei Bogdan Ungureanu Romania, Iuliana Trașcă - Romania, Neculai Stanciu - Romania Soumitra Mandal - Kolkata - India, Nguyen Tuan Anh - Viet Nam M ihály Bencze - Romania, D.M. Bătinețu - Giurgiu - Romania Kunihiko Chikaya - Tokyo - Japan, Gheorghe Alexe - Romania George - Florin Șerban - Romania, Francis Fregeau - Quebec -

Canada, Cornel Ioan Vălean - Romania

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solutions by

Daniel Sitaru - Romania
Kevin Soto Palacios - Huarmey - Peru, Soumitra Mandal - Kolkata India, Henry Ricardo - New York - USA, Pham Quy - Vietnam, Rustem Zeynalov - Baku - Azerbaidjian, Imad Zak - Saida Lebanon, Nguyen Viet Hung - Hanoi - Vietnam, Ngo M inh Ngoc Bao - Vietnam, Anas Adlany - El Jadida- M orroco, Nguyen Minh Triet Quang Ngai - Vietnam, Soumava Chakraborty - Kolkata - India, M yagmarsuren Yadamsuren - Darkhan - M ongolia, M ihály Bencze

- Romania, Marian Ursărescu - Romania, Ravi Prakash - New Delhi
- India, Mirza Uzair Baig-Lahore-Pakistan, Nguyen Phuc Tang -

Hanoi - Vietnam, SK Rejuan West Bengal - India, Francis Fregeau Quebec - Canada, Hamza Mahmood - Lahore - Pakistan

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

JP.031. Let a, b, c be non-negative real numbers. Prove that

$$
9(a+b+c) \geq \sqrt[4]{\frac{a^{4}+b^{4}+c^{4}}{3}}+26 \sqrt{\frac{a b+b c+c a}{3}}
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

Solution by Kevin Soto Palacios - Huarmey - Peru

Sean: a, b, c números reales no negativos. Probar que:

$$
9(a+b+c) \geq \sqrt[4]{\frac{a^{4}+b^{4}+c^{4}}{3}}+26 \sqrt{\frac{(a b+b c+c a)^{2}}{9}}
$$

Desde que: $a, b, c \geq 0$, sea: $a^{4}+b^{4}+c^{4}=3 x^{4},(a b+b c+a c)^{2}=9 y^{4}$
$\Rightarrow 9(a+b+c) \geq x+26 y$. Por la desigualdad de Holder:
$\left(x^{4}+26 y^{4}\right)(1+26)(1+26)(1+26) \geq(x+26 y)^{4} \rightarrow \sqrt[4]{27^{3}\left(x^{4}+26 y^{4}\right)} \geq x+26 y$
Esto es suficeiente probar: $9(a+b+c) \geq \sqrt[4]{27^{3}\left(x^{4}+26 y^{4}\right)} \rightarrow$

$$
\rightarrow 3^{8}(a+b+c)^{4} \geq 3^{9}\left(x^{4}+26 y^{4}\right)
$$

$$
\Rightarrow 3(a+b+c)^{4} \geq 3\left(a^{4}+b^{4}+c^{4}\right)+26(a b+b c+a c)^{2}
$$

$$
\Rightarrow 3\left(a^{4}+b^{4}+c^{4}\right)+18\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)+12 a b\left(a^{2}+b^{2}\right)+
$$

$$
+12 b c\left(b^{2}+c^{2}\right)+12 c a\left(c^{2}+a^{2}\right)+36 a b c(a+b+c) \geq
$$

$$
\geq 3\left(a^{4}+b^{4}+c^{4}\right)+26\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)+52 a b c(a+b+c)
$$

$$
\Rightarrow 12 a b\left(a^{2}+b^{2}\right)+12 b c\left(b^{2}+c^{2}\right)+12 c a\left(c^{2}+a^{2}\right) \geq
$$

$$
\geq 8\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)+16 a b c(a+b+c)
$$

$$
\Rightarrow 12 a b\left(a^{2}+b^{2}\right)+12 b c\left(b^{2}+c^{2}\right)+12 c a\left(c^{2}+a^{2}\right) \geq
$$

$$
\geq 24\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) \geq 8\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)+16 a b c(a+b+c)
$$

$$
\Rightarrow 16\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) \geq 16 a b c(a+b+c) \ldots(\text { LQQD })
$$

JP.032. Prove the following inequality holds for all non-negative real numbers a, b :

$$
\frac{1}{4 a+1}+\frac{1}{4 b+1}+\frac{6}{2 a+2 b+1} \geq \frac{4}{3 a+b+1}+\frac{4}{3 b+a+1}
$$

Proposed by Nguyen Viet Hung- Hanoi - Vietnam

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Solution 1 by Kevin Soto Palacios - Huarmey - Peru

Probar la siguiente desigualdad para todos los números reales non negativos: a, b :

$$
\frac{1}{4 a+1}+\frac{1}{4 b+1}+\frac{6}{2 a+2 b+1} \geq \frac{4}{3 a+b+1}+\frac{4}{3 b+a+1}
$$

Sea: $x=4 a+1 \geq 1, y=4 b+1 \geq 1, x+y=2(2 a+2 b+1)$. Además:

$$
\begin{gathered}
12 a+4 b+4=3(4 a+1)+(4 b+1)=3 x+y, \\
12 b+4 a+4=3(4 b+1)+(4 a+1)=3 y+x \\
\Rightarrow: \frac{1}{x}+\frac{1}{y}+\frac{12}{x+y} \geq \frac{16}{3 x+y}+\frac{16}{3 y+x} \rightarrow \frac{x+y}{x y}+\frac{12}{x+y} \geq \frac{16(3 y+x)+16(3 x+y)}{(3 x+y)(y+3 x)} \\
\Rightarrow \frac{(x+y)^{2}+12 x y}{x y(x+y)} \geq \frac{64(x+y)}{\left(3 x^{2}+3 y^{2}+10 x y\right)} \rightarrow \\
\rightarrow\left[3\left(x^{2}+y^{2}\right)+10 x y\right]\left[(x+y)^{2}+12 x y\right] \geq 64(x+y)^{2} x y \\
\Rightarrow 3\left(x^{2}+y^{2}\right)(x+y)^{2}+36 x y\left(x^{2}+y^{2}\right)+10 x y(x+y)^{2}+120 x^{2} y^{2} \geq 64(x+y)^{2} x y \\
\Rightarrow 3\left(x^{2}+y^{2}\right)(x+y)^{2}+36 x y\left(x^{2}+y^{2}\right)+10 x y(x+y)^{2}+120 x^{2} y^{2} \geq 64(x+y)^{2} x y \\
\Rightarrow 3\left(x^{2}+y^{2}\right)(x+y)^{2}+36 x y\left(x^{2}+y^{2}\right)+120 x^{2} y^{2} \geq 54(x+y)^{2} x y \\
\Rightarrow\left(x^{2}+y^{2}\right)(x+y)^{2}+12 x y\left(x^{2}+y^{2}\right)+40 x^{2} y^{2} \geq 18(x+y)^{2} x y \\
\Rightarrow\left(x^{2}+y^{2}\right)^{2}+14 x y\left(x^{2}+y^{2}\right)+40 x^{2} y^{2} \geq 18 x y\left(x^{2}+y^{2}\right)+36 x^{2} y^{2} \\
\Rightarrow\left(x^{2}+y^{2}\right)^{2}-4 x y\left(x^{2}+{ }^{2}\right)+4 x^{2} y^{2}=\left(\left(x^{2}+y^{2}\right)-(2 x y)\right)^{2}=(x-y)^{4} \geq 0
\end{gathered}
$$

La igualdad se alcanza cuando: $x=y=4 a+1=4 b+1 \rightarrow a=b$ Solution 2 by Soumitra Mandal - Kolkata - India

$$
\begin{gathered}
\frac{1}{4 a+1}+\frac{1}{4 b+1}+\frac{6}{2 a+2 b+1} \geq \frac{4}{3 a+b+1}+\frac{4}{a+3 b+1} \\
\Leftrightarrow \int_{0}^{1} x^{4 a} d x+\int_{0}^{1} x^{4 b} d x+6 \int_{0}^{1} x^{2(a+b)} d x \geq 4 \int_{0}^{1} x^{3 a+b} d x+4 \int_{0}^{1} x^{a+3 b} d x \\
\Leftrightarrow A^{4}+B^{4}+6 A^{2} B^{2} \geq 4 A B\left(A^{2}+B^{2}\right) \\
\Leftrightarrow\left(A^{2}+B^{2}\right)^{2}-4 A B\left(A^{2}+B^{2}\right)+4 A^{2} B^{2} \geq 0 \Leftrightarrow(A-B)^{4} \geq 0, \text { which is true } \\
\frac{1}{4 a+1}+\frac{1}{4 b+1}+\frac{6}{2 a+2 b+1} \geq \frac{4}{3 a+b+1}+\frac{4}{a+3 b+1} \\
\text { (proved) }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 3 by Henry Ricardo - New York - USA
Noting that $\frac{1}{4 a+1}=\int_{0}^{1} t^{4 a} d t$, we see that the given inequality is equivalent to

$$
\int_{0}^{1} t^{4 a}+t^{4 b}+6 t^{2 a+2 b} d t \geq \int_{0}^{1} 4 t^{3 a+b}+4 t^{3 b+a} d t
$$

or $t^{4 a}+t^{4 b}+6 t^{2 a+2 b} \geq 4 t^{3 a+b}+4 t^{3 b+a}$. If we let $t^{a}=x$ and $t^{b}=y$, the inequality is equivalent to $x^{4}+y^{4}+6 x^{2} y^{2} \geq 4 x^{3} y+4 x y^{3}$, or $(x-y)^{4} \geq 0$, which is true. Solution 4 by Imad Zak - Saida - Lebanon

Another attempt:

Let $A=\frac{1}{4 a+1}+\frac{3}{2 a+2 b+1}+\frac{4}{3 b+a+1}$ and $B=\frac{1}{4 b+1}+\frac{3}{2 a+2 b+1}-\frac{4}{3 b+a+1}$ we want to prove $A+B \geq 0$. We find $A=\frac{2(a-b)(5 a-b+1)}{(4 a+1)(3 a+b+1)(2 a+2 b+2)}$ and $B=\frac{2(a-b)(a-5 b-1)}{(4 b+1)(3 b+a+1)(2 a+2 b+1)}$ and finally $A+B=\frac{2(a-b)}{2 a+2 b+1} \cdot\left(\frac{5 a-b+1}{(4 a+1)(3 a+b+1)}+\frac{a-5 b-1}{(4 b+1)(a+3 b+1)}\right)=24(a-b)^{\frac{4}{D}}$ where

$$
D=(4 a+1)(4 b+1)(3 a+b+1)(a+3 b+1)(2 a+2 b+1)
$$

Clearly $+B \geq 0$. Q.E.D. and equality holds when $a=b$.

JP.033. Let a, b, c be positive real numbers such that

$$
a \sqrt{b c}+b \sqrt{c a}+c \sqrt{a b}+2 a b c=1
$$

Prove that

$$
\frac{\sqrt{b c}}{a}+\frac{\sqrt{c a}}{b}+\frac{\sqrt{a b}}{c} \geq 2(a+b+c)
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam
Solution by Kevin Soto Palacios - Huarmey - Peru
Siendo a, b, c números reales positivos de tal manera que:
$a \sqrt{b c}+b \sqrt{a c}+c \sqrt{a b}+2 a b c=1$. Probar que: $\frac{\sqrt{b c}}{a}+\frac{\sqrt{a c}}{b}+\frac{\sqrt{a b}}{c} \geq 2(a+b+c) .$.
Siendo: $A+B+C=\pi$. En un triángulo $A B C$, se cumple:

$$
\begin{aligned}
& \cos ^{2} A+\cos ^{2} B+\cos ^{2} C+2 \cos A \cos B \cos C=1 \\
& \Rightarrow \text { Sea }: a \sqrt{b c}=\cos ^{2} A, b \sqrt{a c}=\cos ^{2} B, c \sqrt{a b}=\cos ^{2} C \text {, }
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$\boldsymbol{a b c}=\boldsymbol{\operatorname { c o s }} A \cos B \cos C>0$ (Δ acutángulo). Por lo tanto:
$a=\frac{\cos ^{3} A}{\cos B \cos C}>0, b=\frac{\cos ^{3} B}{\cos A \cos C}>0, c=\frac{\cos ^{3} C}{\cos A \cos B}>0$. La desigualdad es equivalente en \ldots (A): $\Rightarrow \frac{\cos ^{2} B \cos ^{2} C}{\cos ^{4} A}+\frac{\cos ^{2} A \cos ^{2} C}{\cos ^{4} B}+\frac{\cos ^{2} A \cos ^{2} B}{\cos ^{4} C} \geq 2 \frac{\cos ^{3} A}{\cos B \cos C}+2 \frac{\cos ^{3} B}{\cos A \cos C}+2 \frac{\cos ^{3} C}{\cos A \cos B}$
De la siguiente desigualdad para todos x, y, z números reales, se cumple en un
triángulo $A B C: x^{2}+y^{2}+z^{2} \geq 2 x y \cos A+2 y z \cos B+2 z x \cos C$. Siendo:

$$
\begin{gathered}
x=\frac{\cos A \cos C}{\cos ^{2} B}>0, y=\frac{\cos B \cos A}{\cos ^{2} C}>0, z=\frac{\cos B \cos C}{\cos ^{2} A}>0 \rightarrow \text { (} \Delta \text { acutángulo) } \\
\text { Se obtiene: } \Rightarrow \frac{\cos ^{2} B \cos ^{2} C}{\cos ^{4} A}+\frac{\cos ^{2} A \cos ^{2} C}{\cos ^{4} B}+\frac{\cos ^{2} A \cos ^{2} B}{\cos ^{4} C} \geq \\
\geq 2 \frac{\cos ^{3} A}{\cos B \cos C}+2 \frac{\cos ^{3} B}{\cos A \cos C}+2 \frac{\cos ^{3} C}{\cos A \cos B} \ldots \text { (LQQD) }
\end{gathered}
$$

JP.034. Find all pairs (x, y) of integers satisfying the equation

$$
x^{4}-(y+2) x^{3}+(y-1) x^{2}+\left(y^{2}+2\right) x+y=2
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

Solution by Nguyen Viet Hung - Hanoi - Vietnam

The equation is equivalent to $\left(x^{2}-2 x-y\right)\left(x^{2}-y x-1\right)=2$.

There are four possible cases as follows

$$
\text { Case 1: }\left\{\begin{array} { l }
{ x ^ { 2 } - 2 x - y = 1 , } \\
{ x ^ { 2 } - y x - 1 = 2 , }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
x^{2}-2 x-1=y, \\
x(x-y)=3 .
\end{array}\right.\right.
$$

It's easy to find 3 pairs of (x, y) satisfying this system of equations as

$$
\begin{gathered}
(-1,2),(1,-2),(3,2) . \\
\text { Case } 2:\left\{\begin{array} { l }
{ x ^ { 2 } - 2 x - y = 2 , } \\
{ x ^ { 2 } - y x - 1 = 1 , }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
x^{2}-2 x-2=y, \\
x(x-y)=2
\end{array}\right.\right.
\end{gathered}
$$

There is only one pair (x, y) satisfying this system of equations as $(-1,1)$.

$$
\text { Case 3: }\left\{\begin{array} { l }
{ x ^ { 2 } - 2 x - y = - 1 , } \\
{ x ^ { 2 } - y x - 1 = - 2 , }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
(x-1)^{2}=y \\
x(x-y)=-1
\end{array}\right.\right.
$$

There is no pair of (x, y) satisfying this system of equations.

$$
\text { Case 4: }\left\{\begin{array} { l }
{ x ^ { 2 } - 2 x - y = - 2 , } \\
{ x ^ { 2 } - y x - 1 = - 1 , }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
x^{2}-2 x+2=y, \\
x(x-y)=0 .
\end{array}\right.\right.
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

We find 3 pairs (x, y) satisfying this system of equations as $(0,2),(1,1),(2,2)$.
So, there are 7 pairs (x, y) satisfying the requirement as

$$
(-1,2),(1,-2),(3,2),(-1,1),(0,2),(1,1),(2,2)
$$

JP.035. Let a, b, c be non-negative real numbers such that $a+b+c=3$. Prove that

$$
5+\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}+a b c \geq 3(a b+b c+c a)
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam
Solution by Kevin Soto Palacios - Huarmey - Peru
Siendo a,b,c números reales no negativos de tal manera que:

$$
\begin{gathered}
a+b+c=3 . \text { Probare que: } 5+\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}+a b c \geq 3(a b+b c+c a) \\
\Rightarrow 5+\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}+a b c \geq(a+b+c)(a b+b c+a c) \\
\Rightarrow 5+\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}+a b c \geq(a+b)(b+c)(c+a)+a b c \\
\Rightarrow 15+\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c} \geq 3(a+b)(b+c)(c+a) \\
\Rightarrow a^{3}+b^{3}+c^{3}+15+3 \sqrt[3]{a}+3 \sqrt[3]{b}+3 \sqrt[3]{c} \geq a^{3}+b^{3}+c^{3}+3(a+b)(b+c)(c+a) \\
\Rightarrow a^{3}+b^{3}+c^{3}+3 \sqrt[3]{a}+3 \sqrt[3]{b}+3 \sqrt[3]{c} \geq(a+b+c)^{3}=27 \\
\Rightarrow a^{3}+b^{3}+c^{3}+3 \sqrt[3]{a}+3 \sqrt[3]{b}+3 \sqrt[3]{c} \geq 12 . \text { Desde que: } a, b, c \geq 0 . \text { Por: MA } \geq M G \\
\Rightarrow \\
\Rightarrow a^{3}+\sqrt[3]{a}+\sqrt[3]{a}+\sqrt[3]{a} \geq 4 \sqrt[4]{a^{4}}=4 a \rightarrow a^{3}+3 \sqrt[3]{a} \geq 4 a \ldots \text { (A) }
\end{gathered}
$$

Análogamente: $b^{3}+3 \sqrt[3]{b} \geq 4 b \ldots$ (B); $c^{3}+3 \sqrt[3]{c} \geq 4 c \ldots$ (C)
Sumando: (A) + (B) $+(\mathrm{C}):\left(a^{3}+b^{3}+c^{3}\right)+3 \sqrt[3]{a}+3 \sqrt[3]{b}+3 \sqrt[3]{c} \geq 4(a+b+c)=12$

JP.036. Prove the following inequality

$$
[(x+y)(y+z)(z+x)]^{4} \geq \frac{16^{3}}{27}(x+y+z)^{3} x^{3} y^{3} z^{3}
$$

where x, y, z are positive real numbers.
Proposed by Andrei Bogdan Ungureanu - Romania
Solution 1 by Soumitra Mandal - Kolkata - India

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
9 \prod_{c y c}(x+y) \geq 8(x+y+z)(x y+y z+z x) \\
\Rightarrow\left[\prod_{c y c}(x+y)\right]^{4} \geq \frac{2^{12}}{9^{4}}(x+y+z)^{4}(x y+y z+z x)^{4}= \\
=\frac{16^{3}}{9^{4}}(x+y+z)^{3} \cdot(x+y+z)(x y+y z+z x) \cdot(x y+y z+z x)^{3} \\
\geq \frac{16^{3}}{9^{4}}(x+y+z)^{3} \cdot 9 x y z \cdot 27 x^{2} y^{2} z^{2}=\frac{16^{3}}{27}(x+y+z)^{3} x^{3} y^{3} z^{3} \\
\text { (proved) }
\end{gathered}
$$

Solution 2 by Pham Quy - Vietnam

Lemma:

$$
\begin{gathered}
(x+y)(y+z)(z+x) \geq \frac{8}{9}(x+y+z)(x y+y z+z x) \stackrel{A M-G M}{\geq} \frac{8}{3}(x+y+z) \sqrt[3]{(x y z)^{2}} \\
\Rightarrow[(x+y)(y+z)(z+x)]^{3} \geq \frac{8^{3}}{27}(x+y+z)^{3}(x y z)^{2}(1)
\end{gathered}
$$

By AM-GM inequality

$$
\begin{gathered}
(x+y)(y+z)(z+x) \geq 2^{2} x y z \text { (2) } \\
\text { (1) \& (2) } \\
\Rightarrow[(x+y)(y+z)(z+x)]^{4} \geq \frac{16^{3}}{27}(x+y+z)^{3} x^{3} y^{3} z^{3} \text { (q.e.d.) }
\end{gathered}
$$

The equality holds at $x=y=z$
Solution 3 by Rustem Zeynalov - Baku - Azerbaidjian

$$
\begin{gathered}
x+y=a ; y+z=b ; z+x=c \\
a^{4} b^{4} c^{4} \geq \frac{16^{3}}{27} \cdot\left(\frac{a+b+c}{2}\right)^{3} \cdot\left[\frac{a+b-c}{2} \cdot \frac{a+c-b}{2} \cdot \frac{b+c-a}{2}\right]^{3} \\
a^{4} b^{4} c^{4} \geq \frac{1}{27}[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]^{3} \\
(a+b+c)(a+b-c)(a+c-b)(b+c-a) \leq \sqrt[3]{27 a^{4} b^{4} c^{4}} \\
2 a^{2} b^{2}+2 a^{2} c^{2}+2 b^{2} c^{2}-a^{4}-b^{4}-c^{4} \leq \sqrt[3]{27 a^{4} b^{4} c^{4}} \\
a^{4}+b^{4}+c^{4}+\sqrt[3]{27 a^{4} b^{4} c^{4}} \geq 2 a^{2} b^{2}+2 a^{2} c^{2}+2 b^{2} c^{2}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Schur inequality
JP.037. Let x, y, z be positive real numbers such that:

$$
16\left(a^{2}+b^{2}+c^{2}\right)+27=128 a b c
$$

Find the maximum value of the expression:

$$
E=\frac{1}{a^{3}+b^{3}+\frac{27}{64}}+\frac{1}{b^{3}+c^{3}+\frac{27}{64}}+\frac{1}{c^{3}+a^{3}+\frac{27}{64}}
$$

Proposed by Iuliana Trașcă; Neculai Stanciu - Romania
Solution by Kevin Soto Palacios - Huarmey - Peru
Sea: x, y, z números \mathbb{R}^{+}de tal manera que: $16\left(a^{2}+b^{2}+c^{2}\right)+27=128 a b c$
Hallar el máximo valor de: $A=\frac{1}{a^{3}+b^{3}+\frac{27}{64}}+\frac{1}{b^{3}+c^{3}+\frac{27}{64}}+\frac{1}{c^{3}+a^{3}+\frac{64}{27}}$. Desde que:

$$
\begin{aligned}
(4 a-3)^{2}+(4 b-3)^{2}+(4 c-3)^{2} & =16\left(a^{2}+b^{2}+c^{2}\right)+27-24(a+b+c)= \\
=128 a b c-24(a+b+c) \geq 0 & \Rightarrow \frac{128}{24} \geq \frac{a+b+c}{a b c} \rightarrow \frac{16}{3} \geq \frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a}
\end{aligned}
$$

$$
\text { Por: MA } \geq \text { MG: } a^{3}+b^{3}+\frac{27}{64} \geq 3 \sqrt[3]{\frac{27 a^{3} b^{3}}{64}} \rightarrow \frac{1}{a^{3}+b^{3}+\frac{27}{64}} \leq \frac{4}{9 a b}
$$

Por la tanto tenemos en ... (A): $A=\frac{1}{a^{3}+b^{3}+\frac{27}{64}}+\frac{1}{b^{3}+c^{3}+\frac{27}{64}}+\frac{1}{c^{3}+a^{3}+\frac{64}{27}} \leq \frac{4}{9 a b}+\frac{4}{9 b c}+\frac{4}{9 a c} \leq$

$$
\begin{gathered}
\leq \frac{4}{9} \times \frac{16}{3}=\frac{64}{27} \ldots \text { (LQQD) } \\
A_{\text {Máx }} \leq \frac{64}{27} . \text { La igualdad se alcanza cuando: } a=b=c=\frac{3}{4}
\end{gathered}
$$

JP.038. Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>0$, prove that:

$$
\left.6\left(\sum a b\right)\left(\sum a^{2}\right)+7 a b c\left(\sum a\right) \geq 23 a b c \sqrt{3\left(\sum a^{2}\right)} \mathbf{(}^{*}\right)
$$

Proposed by Soumitra Mandal - Kolkata - India

Solution by Ngo Minh Ngoc Bao - Vietnam

We have two lemma: Lemma 1: If $a, b, c>0$ then $\left(\sum \frac{a}{b}\right)\left(\sum a\right) \geq 3 \sqrt{3\left(\sum a^{2}\right)}$
Prove: Use Cauchy - Schwarz

$$
\sum \frac{a}{b} \geq \frac{\left(\sum a\right)^{2}}{\sum a b} \Rightarrow\left(\sum \frac{a}{b}\right)\left(\sum a\right) \geq \frac{\left(\sum a\right)^{3}}{\sum a b} .
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
We need to prove: $\frac{\left(\sum a\right)^{3}}{\sum a b} \geq 3 \sqrt{3\left(\sum a^{2}\right)} \Leftrightarrow\left(\sum a\right)^{6} \geq 27\left(\sum a b\right)^{2}\left(\sum a^{2}\right){ }^{(* *)}$.
Use AM- GMinequality: $\left(\sum a\right)^{6}=\left(\left(\sum a^{2}\right)+\left(\sum a b\right)+\left(\sum a b\right)\right)^{3} \geq 27\left(\sum a^{2}\right)\left(\sum a b\right)^{2}$

$$
\Rightarrow \operatorname{LHS}(* *) \geq R H S(* *) .
$$

Lemma 2: Consider polynomial

$$
f(x, y, z)=\sum x^{4}+A \sum x^{2} y^{2}+B x y z \sum x+C \sum x^{3} y+D \sum x y^{3}
$$

(with A, B, C, D is the constant)

$$
f(x, y, z) \geq 0 \Leftrightarrow\left\{\begin{array}{c}
1+A+B+C+D \geq 0 \\
3(1+A)<C^{2}+C D+D^{2} \\
5+A+2 C+2 D \geq 0 \\
g(x)=(4+C+D)\left(x^{3}+1\right)+(A+2 C-D-1) x^{2}+(A-C+2 D-1) x \geq 0, \forall x \geq 0
\end{array}\right.
$$

My solution

$\left(^{*}\right) \Leftrightarrow 6 \sum a^{3} b+6 \sum a b^{3}+13 a b c \sum a \geq 23 a b c \sqrt{3\left(\sum a^{2}\right)}$, we need to prove:

$$
\begin{gathered}
6 \sum a^{3} b+6 \sum a b^{3}+13 a b c \sum a-\frac{23}{3} a b c\left(\sum \frac{a}{b}\right)\left(\sum a\right) \geq 0 \\
\Leftrightarrow 6 \sum a^{3} b+6 \sum a b^{3}+13 a b c \sum a-\frac{23}{3}\left(\sum a^{2} b^{2}+\sum a b^{3}+a b c \sum a\right) \geq 0 \\
\Leftrightarrow 6 \sum a^{3} b-\frac{5}{3} \sum a b^{3}-\frac{23}{3} \sum a^{2} b^{2}+\frac{16}{3} a b c \sum a \geq 0\left({ }^{* * *}\right)
\end{gathered}
$$

$$
\text { Use lemma } 2 \text { with } A=-\frac{23}{3}, B=\frac{16}{3}, C=6, D=-\frac{5}{3} \text {. }
$$

$$
\text { We have: }\left\{\begin{array}{c}
1+A+B+C+D=1-\frac{23}{3}+\frac{16}{3}+6-\frac{5}{3}=3>0 \\
5+A+2 C+2 D=5-\frac{23}{3}+12-\frac{10}{3}=6>0 \\
3(1+A)=-\frac{60}{3}<6^{2}-6 \cdot \frac{5}{3}+\frac{25}{9}=26+\frac{25}{9}=C^{2}+C D+D^{2}
\end{array}\right.
$$

Considering function: $g(x)=\frac{25}{3} x^{3}+5 x^{2}-18 x+\frac{25}{3} \Rightarrow g^{\prime}(x)=25 x^{2}+10 x-18$

$$
g^{\prime}(x)=0 \Leftrightarrow 25 x^{2}+10 x-18=0 \Leftrightarrow\left[\begin{array}{l}
x=\frac{-1+\sqrt{19}}{5} \\
x=\frac{-1-\sqrt{19}}{5}
\end{array}\right.
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

| x | 0 | $\frac{-1+\sqrt{19}}{5}$ |
| :--- | :---: | :---: | :---: |
| $g^{\prime}(x)$ | - | $+\infty$ |
| $g(x)$ | $\xrightarrow{\boldsymbol{g}(\boldsymbol{x}) \geq \boldsymbol{g}\left(\frac{-\mathbf{1}+\sqrt{\mathbf{1 9}}}{\mathbf{5}}\right)>0 \Rightarrow \boldsymbol{g}(\boldsymbol{x})>0, \forall \boldsymbol{x} \geq \mathbf{0}}$ | |

JP.039. In ABC triangle the following relationship holds:

$$
3\left(a^{a} b^{b} c^{c}\right)^{\frac{1}{2 s}} \geq \sqrt[9]{4 R S} \sum\left(a^{a} b^{b} c^{c}\right)^{\frac{1}{3 s}}
$$

Proposed by Daniel Sitaru - Romania

Solution by proposer

If $\lambda \in(0,1) ; x, y, z \in \mathbb{R} ; x+y+z=1$ then: $\sum a^{x} b^{y} c^{z} \geq \sum a^{\lambda x+\frac{1-\lambda}{3}} b^{\lambda y+\frac{1-\lambda}{3}} c^{\lambda z+\frac{1-\lambda}{3}}$
For: $x=\frac{a}{a+b+c} ; y=\frac{b}{a+b+c} ; z=\frac{c}{a+b+c}$. We have: $x+y+z=1 ; a+b+c=2 p$

$$
\begin{equation*}
\sum \boldsymbol{a}^{\frac{a}{2 s}} \cdot \boldsymbol{b}^{\frac{b}{2 s}} \cdot \boldsymbol{c}^{\frac{c}{2 s}} \geq \sum \boldsymbol{a}^{\frac{\lambda a}{2 s}+\frac{1-\lambda}{3}} \boldsymbol{b}^{\frac{\lambda b}{2 s}+\frac{1-\lambda}{3}} \boldsymbol{c}^{\frac{\lambda c}{2 s}+\frac{1-\lambda}{3}} \tag{1}
\end{equation*}
$$

We take: $\lambda=\frac{2}{3} ; \frac{\lambda a}{2 s}+\frac{1-\lambda}{3}=\frac{2 a}{6 s}+\frac{1-\frac{2}{3}}{3}=\frac{a}{3 s}+\frac{1}{9}=\frac{3 a+s}{9 s}$
and analogous: $\frac{\lambda b}{2 s}+\frac{1-\lambda}{3}=\frac{3 b+s}{9 s} ; \frac{\lambda c}{2 s}+\frac{1-\lambda}{3}=\frac{3 c+s}{9 s}$. The relationship (1) can be written:

$$
\begin{aligned}
& \sum\left(a^{a} \cdot b^{b} \cdot c^{c}\right)^{\frac{1}{2 s}} \geq \sum a^{\frac{3 a+s}{9 s}} b^{\frac{3 b+s}{9 s}} c^{\frac{3 c+s}{9 s}}=\sum\left(a^{3 a+s} \cdot b^{3 b+s} \cdot c^{3 c+s}\right)^{\frac{1}{9 s}}= \\
= & \sum(a b c)^{\frac{1}{9}}\left(a^{3 a} b^{3 b} c^{3 c}\right)^{\frac{1}{9 s}}=\sqrt[9]{a b c} \sum\left(a^{a} b^{b} c^{c}\right)^{\frac{1}{3 s}}=\sqrt[9]{4 R S} \sum\left(a^{a} b^{b} c^{c}\right)^{\frac{1}{3 s}}
\end{aligned}
$$

JP.040. Prove that if $a, b, c, d \in(0, \infty) ; \sqrt{3}(a d-b c)=a c+b d \neq 0$ then:

$$
d(a+b \sqrt{3})-c(b-a \sqrt{3})>4 \sqrt[4]{a b c d}
$$

Proposed by Daniel Sitaru - Romania

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution by Anas Adlany - El Jadida- M orroco

We have $\sqrt[3]{3}(a d-b c):=a c+b d \neq 0 \Rightarrow d(a \sqrt{3}-b):=c(a+b \sqrt{3})$
Also, we conclude that $\boldsymbol{a d}>b c \Rightarrow \sqrt[4]{\boldsymbol{a b c d}}<\sqrt{\boldsymbol{a b c d}}$ and $\boldsymbol{a} \sqrt{\mathbf{3}}>b, 3 \boldsymbol{a}>b \sqrt{3}$.
Thus, $d(a+b \sqrt{3})-c(b-a \sqrt{3}):=d(a+b \sqrt{3})+\frac{c^{2}}{d}(a+b \sqrt{3}):=\left(\frac{c^{2}+d^{2}}{d}\right)(a+b \sqrt{3})$
Hence, we have to prove that $\left(\frac{c^{2}+d^{2}}{d}\right)(a+b \sqrt{3})>4 \sqrt[4]{a b c d}$. But,

$$
\begin{gathered}
a>\frac{b c}{d} \Rightarrow a+b \sqrt{3}>b\left(\sqrt{3}+\frac{c}{d}\right) \Rightarrow\left(\frac{c^{2}+d^{2}}{d}\right)(a+b \sqrt{3})>\frac{b}{d}\left(c^{2}+d^{2}\right)\left(\sqrt{3}+\frac{c}{d}\right) \\
\quad\left(\frac{c^{2}+d^{2}}{d}\right)(a+b \sqrt{3})>2 b c\left(\sqrt{3}+\frac{c}{d}\right)>4 b c \sqrt{\frac{b c}{a d}}:=4 \sqrt{\frac{b^{3} c^{3}}{a d}}
\end{gathered}
$$

And note that $\sqrt{\frac{b^{3} c^{3}}{a d}}>\sqrt{a b c d} \Leftrightarrow(a d)^{2}>(b c)^{2}$
Which is true due to the first observation (see above).
Conclusion: From all those inequalities, we shall obtain the desired inequality.
Comment: this is a great problem for juniors, all thanks to sir DAN STTARU.

JP.041. Prove that in an $A B C$ acute-angled triangle the following relationship holds:

$$
\cos \left(\frac{\pi}{4}-A\right)+\cos \left(\frac{\pi}{4}-B\right)+\cos \left(\frac{\pi}{4}-C\right)>\frac{2 S}{R^{2}}
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Kevin Soto Palacios - Huarmey - Peru

Probar en un triángulo $A B C$, la siguiente desigualdad:

$$
\cos \left(\frac{\pi}{4}-A\right)+\cos \left(\frac{\pi}{4}-B\right)+\cos \left(\frac{\pi}{4}-C\right)>\frac{2 S}{R^{2}}
$$

Dado que es un triángulo acutángulo $0<A, B, C<\frac{\pi}{2}$, $\cos A, \cos B, \cos C>0, \operatorname{sen} A, \operatorname{sen} B, \operatorname{sen} C>0$

Desde que: $S=2 R^{\mathbf{2}} \operatorname{sen} A \operatorname{sen} B \operatorname{sen} C$, se tiene la desigualdad:

$$
\Rightarrow \frac{\sqrt{2}}{2}((\cos A+\operatorname{sen} A)+(\cos B+\operatorname{sen} B)+(\cos C+\operatorname{sen} C))>4 \operatorname{sen} A \operatorname{sen} B \operatorname{sen} C \ldots \text { (A) }
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$\Rightarrow \frac{\sqrt{2}}{2}(\cos A+\operatorname{sen} A)>\operatorname{sen} 2 A \rightarrow \cos A+\operatorname{sen} A>\sqrt{2} \operatorname{sen} A \rightarrow(\cos A+\operatorname{sen} A)^{2}>2 \operatorname{sen}^{2} A$
$\Rightarrow 1+\operatorname{sen} 2 A>2 \operatorname{sen}^{2} 2 A \rightarrow 2 \operatorname{sen}^{2} 2 A-\operatorname{sen} 2 A-1=(2 \operatorname{sen} 2 A+1)(\operatorname{sen} 2 A-1)<0$
Lo cual es cierto ya que: $\mathbf{0}<2 A<\pi \rightarrow \mathbf{0}<\operatorname{sen} 2 A<1$, por la tanto:
$2 \operatorname{sen} 2 A+1>0 \wedge \operatorname{sen} 2 A-1<0$. Por lo tanto se tendrá en ... (A):

$$
\begin{aligned}
& \Rightarrow \frac{\sqrt{2}}{2}((\cos A+\operatorname{sen} A)+(\cos B+\operatorname{sen} B)+(\cos C+\operatorname{sen} C))> \\
& >\operatorname{sen} 2 A+\operatorname{sen} 2 B+\operatorname{sen} 2 C=4 \operatorname{sen} A \operatorname{sen} B \operatorname{sen} C \quad(\mathrm{LQQD})
\end{aligned}
$$

Solution 2 by Nguyen Minh Triet - Quang Ngai - Vietnam

(\forall) x, we have: $\cos x+\sin x=\sqrt{2} \cos \left(\frac{\pi}{4}-x\right)$. Hence, $L H S=\left[\sum_{c y c}(\cos A+\sin A)\right] \cdot \frac{1}{\sqrt{2}}$
Let $x=\cos A+\sin A ; y=\cos B+\sin B, c=\cos C+\sin C$. Then $x, y, z \in(0, \sqrt{2}]$ and

$$
L H S=\frac{1}{\sqrt{2}}(x+y+z) . \text { So }(\sqrt{2}-x)(x \sqrt{2}+1) \geq 0 \Rightarrow x \geq x^{2} \sqrt{2}-\sqrt{2} .
$$

Similarly $y \geq y^{2} \sqrt{2}-\sqrt{2} ; z \geq z^{2} \sqrt{2}-\sqrt{2}$
$\Rightarrow x+y+z \geq \sqrt{2} \cdot\left(x^{2}+y^{2}+z^{2}-3\right)=\sqrt{2} \sum_{c y c}\left[(\sin A+\cos A)^{2}-1\right]=$
$=\sqrt{2} \cdot \sum_{c y c} \sin 2 A=4 \sqrt{2} \cdot \sin A \sin B \sin C=\sqrt{2} \cdot \frac{a}{R} \cdot \frac{b}{R} \cdot \sin C=\frac{2 S \cdot \sqrt{2}}{R^{2}}$

$$
\Rightarrow \frac{1}{\sqrt{2}}(x+y+z) \geq \frac{2 S}{R^{2}} \text { or } L H S \geq R H S \text {. The equality doesn't hold, so: }
$$

$$
\sum_{\text {cyc }} \cos \left(\frac{\pi}{4}-A\right)>\frac{2 S}{R^{2}}
$$

(q.e.d.)

Solution 3 by Soumava Chakraborty - Kolkata - India
Given inequality $\Leftrightarrow \frac{1}{\sqrt{2}} \cos A+\frac{1}{\sqrt{2}} \sin A+\frac{1}{\sqrt{2}} \cos B+\frac{1}{\sqrt{2}} \sin B+\frac{1}{\sqrt{2}} \cos C+\frac{1}{\sqrt{2}} \sin C>$

$$
\begin{gathered}
>\frac{2}{R^{2}}\left(2 R^{2} \sin A \sin B \sin C\right) \\
\Leftrightarrow \sum \cos a+\sum \sin A>4 \sqrt{2}\left(2 \sin \frac{A}{2} \cos \frac{A}{2}\right)\left(2 \sin \frac{B}{2} \cos \frac{B}{2}\right)\left(2 \sin \frac{C}{2} \cos \frac{C}{2}\right) \\
\Leftrightarrow 1+4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}+4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
>2 \sqrt{2}\left(4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}\right)\left(4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}\right) \Leftrightarrow 1+x+y>2 \sqrt{2} x y, \text { where } \\
x=4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}, y=4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} \Leftrightarrow 1+x>y(2 \sqrt{2} x-1) ; 0<x \leq \frac{1}{2} \text { and } \\
0<y \leq \frac{3 \sqrt{3}}{2}
\end{gathered}
$$

Case 1: $x \leq \frac{1}{2 \sqrt{2}} \Rightarrow 2 \sqrt{2} x-1 \leq 0 \Rightarrow y(2 \sqrt{2} x-1) \leq 0 ;(y>0)$ $x>0,1+x>0$ and hence $1+x>0$ or any negative quantity

$$
\Rightarrow 1+x>y(2 \sqrt{2} x-1)
$$

Case 2: $x>\frac{1}{2 \sqrt{2}} \Rightarrow 2 \sqrt{2} x-1>0$
$1+x>y(2 \sqrt{2} x-1) \Leftrightarrow \frac{1+x}{2 \sqrt{2} x-1}>y$. Now, $x \leq \frac{1}{2} \Rightarrow 2 \sqrt{2} x \leq \sqrt{2} \Rightarrow 2 \sqrt{2} x-1 \leq \sqrt{2}-1$
$\Rightarrow \frac{1}{2 \sqrt{2} x-1} \geq \frac{1}{\sqrt{2}-1} ;(2 \sqrt{2} x-1>0)=\sqrt{2}+1$. Again, $1+x>1+\frac{1}{2 \sqrt{2}} ; x>\frac{1}{2 \sqrt{2}}$
$\frac{(1+x)}{2 \sqrt{2} x-1}>\left(1+\frac{1}{2 \sqrt{2}}\right)(\sqrt{2}+1)=\sqrt{2}+1+\frac{1}{2}+\frac{1}{2 \sqrt{2}}=\frac{3}{2}+\frac{5 \sqrt{2}}{4}>\frac{3 \sqrt{3}}{2} \geq y$ $\Rightarrow 1+x>y(2 \sqrt{2} x-1)$ (Proved)
Solution 4 by Myagmarsuren Yadamsuren - Darkhan - Mongolia

$$
\begin{gathered}
\frac{\sqrt{2}}{2} \cdot(\underbrace{\cos A+\cos B+\cos C}_{1+\frac{r}{R}}+\underbrace{(\sin A+\sin B+\sin C)}_{\frac{p}{R}})=\frac{\sqrt{2}}{2}\left(1+\frac{r}{R}+\frac{p}{R}\right)>\frac{2 s}{R^{2}} \text { (ASSURE) } \\
1+\frac{r}{R}+\frac{p}{R}>\frac{2 \sqrt{2} \cdot S}{R^{2}} ; R^{2}+R \cdot r+R \cdot p>2 \sqrt{2} \cdot \boldsymbol{S} ; R \geq 2 r ; p \geq 3 \sqrt{3} r ; S=p \cdot r \\
R^{2}+R \cdot r+R \cdot p \geq 2 R \cdot r+R r+3 \sqrt{3} \cdot R \cdot r>2 \sqrt{2} \cdot p \cdot r ;(3+3 \sqrt{3}) \cdot R>2 \sqrt{2} \cdot p \\
\left(\frac{3+3 \sqrt{3}}{2 \sqrt{2}}\right) \cdot R>p\left(^{*}\right)-(\text { (ASSURE }) \\
p=\frac{a+b+c}{2}=R \cdot(\sin A+\sin B+\sin C) \leq R \cdot \frac{3 \sqrt{3}}{2}=\frac{3 \sqrt{3}}{2} \cdot R \\
\frac{3 \sqrt{3}}{2} \cdot R \geq p(* *) \\
(*) ;(* *) \Rightarrow \frac{3+3 \sqrt{3}}{2 \sqrt{2}}>\frac{3 \sqrt{3}}{2} \quad \text { (True) } p \leq \frac{3 \sqrt{3}}{2} \cdot R<\frac{3+3 \sqrt{3}}{2 \sqrt{2}} \cdot R
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

JP.042. Prove that in $\triangle A B C$:

$$
\sum \frac{a^{2}\left(b^{2}+c^{2}-a^{2}\right)^{3}}{b^{2} c^{2}} \geq 64 S^{2}\left(1-\cos ^{2} A-\cos ^{2} B-\cos ^{2} C\right)
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Anas Adlany- El Jadida- M orroco
First, note that in any triangle. $1-\sum \cos ^{2}(A):=2 \Pi \cos (A)$
So, the original inequality is equivalent to $\sum a^{2} \frac{\left(b^{2}+c^{2}-a^{2}\right)^{3}}{(b c)^{2}} \geq 2 \times 64 \times S^{2} \Pi \cos (A)$
Let's do it! From the cosine's law, we have $\cos (A):=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
Now, if we use AM-GM, we shall obtain

$$
\sum a^{2} \frac{\left(b^{2}+c^{2}-a^{2}\right)^{3}}{(b c)^{2}} \geq 3 \sqrt[3]{\prod\left(a^{2} \frac{\left(b^{2}+c^{2}-a^{2}\right)^{3}}{(b c)^{2}}\right)}:=3 a b c \sqrt[3]{a b c} \prod \cos (A)
$$

Hence, it suffices to show that $2 \times 64 \times S^{2} \geq 24 a b c \sqrt[3]{a b c} \Longleftrightarrow 16 S^{2} \geq 3 a b c \sqrt[3]{a b c}$ $\Longleftrightarrow(a+b+c) \Pi(a+b-c) \geq 3 a b c \sqrt[3]{a b c}$. But this is true to AM-GM inequality and

$$
\Pi(\boldsymbol{a}+\boldsymbol{b}-\boldsymbol{c}) \geq \boldsymbol{a b c} . \text { Done! }
$$

Solution 2 by Kevin Soto Palacios - Huarmey - Peru
Probar en un triágulo $A B C: \sum \frac{a^{2}\left(b^{2}+c^{2}-a^{2}\right)^{3}}{b^{2} c^{2}} \geq 64 S^{2}\left(1-\cos ^{2} A-\cos ^{2} B-\cos ^{2} C\right)$
Desde que: $A+B+C=\pi$

$$
\begin{gathered}
\left(1-\cos ^{2} A-\cos ^{2} B-\cos ^{2} C\right)=\sin ^{2} A-\left(1-\sin ^{2} B\right)-\left(1-\sin ^{2} C\right)= \\
=\sin ^{2} A+\sin ^{2} B+\sin ^{2} C-2 \\
\Rightarrow\left(1-\cos ^{2} A-\cos ^{2} B-\cos ^{2} C\right)=\sin ^{2} A+\sin ^{2} B+\sin ^{2} C-2= \\
=2 \cos A \cos B \cos C . \text { Además: }
\end{gathered}
$$

$$
b^{2}+c^{2}-a^{2}=4 S \cot A, a^{2}+c^{2}-b^{2}=4 S \cot B, a^{2}+b^{2}-c^{2}=4 S \cot C
$$ $\boldsymbol{S}=\frac{\boldsymbol{a b c}}{4 \boldsymbol{R}}$. En un triángulo $\boldsymbol{A B C}: \sin A \sin B \sin C>0 \wedge 1-8 \cos A \cos B \cos C \geq 0$

$$
\Rightarrow \sum \frac{a^{2}}{b^{2} c^{2}} 64 S^{3} \cot ^{3} A \geq 64 S^{2}(2 \cos A \cos B \cos C) \Rightarrow
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\Rightarrow \sum \frac{a^{2}}{b^{2} c^{2}} S \cot ^{3} A \geq 2 \cos A \cos B \cos C \Rightarrow \sum \frac{a^{2}}{b^{2} c^{2}} S \cot ^{3} A \geq 2 \cos A \cos B \cos C \Rightarrow \\
\Rightarrow \sum \frac{a^{3}}{4 R b c} \cdot \frac{\cos ^{3} A}{\sin ^{3} A} \geq 2 \cos A \cos B \cos C \Rightarrow \sum \frac{\cos ^{3} A}{2 \sin B \sin C} \geq 2 \cos A \cos B \cos C \Rightarrow \\
\Rightarrow 4 \cos ^{3} A \sin A+4 \cos ^{3} B \sin B+4 \cos ^{3} C \sin C \geq 2 \sin 2 A \sin 2 B \sin 2 C \\
\Rightarrow \sin 2 A(1+\cos 2 A)+\sin 2 B(1+\cos 2 B)+\sin 2 c(1+\cos 2 C) \geq \\
\geq 2 \sin 2 A \sin 2 B \sin 2 C \\
\Rightarrow(\sin 2 A+\sin 2 B+\sin 2 C)+(0,5)(\sin 4 A+\sin 4 B+\sin 4 C) \geq \\
\geq 2 \sin 2 A \sin 2 B \sin 2 C
\end{gathered}
$$

Solution 3 by Soumava Chakraborty - Kolkata - India

$$
\begin{gathered}
\frac{a^{2}\left(b^{2}+c^{2}-a^{2}\right)^{3}}{b^{2} c^{2}}=\frac{a^{2}(2 b c \cos A)^{3}}{b^{2} c^{2}}=8 a^{2} b c \cos ^{3} A \\
S=\Delta
\end{gathered}
$$

$=8\left(4 R^{2} \sin ^{2} A\right)\left(4 R^{2} \sin B \sin C\right) \cos ^{3} A=128 R^{4}(\sin A \sin B \sin C) \sin A \cos ^{3} A$

$$
=64 R^{2}\left(2 R^{2} \sin A \sin B \sin C\right) \sin A \cos ^{3} A=\left(64 R^{2} \cdot \sin A \cdot \cos ^{3} A\right) \Delta
$$

$$
\text { Similarly, } \frac{b^{2}\left(c^{2}+a^{2}-b^{2}\right)^{3}}{c^{2} a^{2}}=\left(64 R^{2} \sin B \cos ^{3} B\right) \Delta
$$

$$
\text { and } \frac{c^{2}\left(a^{2}+b^{2}-c^{2}\right)^{3}}{a^{2} b^{2}}=\left(64 R^{2} \sin C \cos ^{3} C\right) \Delta
$$

given inequality $\Leftrightarrow R^{2} \sum\left(\sin A \cos ^{3} A\right) \geq \Delta\left(1-\cos ^{2} A-\cos ^{2} B-\cos ^{2} C\right)$

$$
\begin{aligned}
& \sin A \cos ^{3} A= \frac{1}{4}(2 \sin A \cos A)\left(2 \cos ^{2} A\right)=\frac{1}{4}(\sin 2 A)(1+\cos 2 A) \\
&= \frac{1}{4}(\sin 2 A+\sin 2 A \cos 2 A)=\frac{1}{4} \sin 2 A+\frac{1}{8} \sin 4 A \\
& R^{2} \sum\left(\sin A \cos ^{3} A\right)=\frac{R^{2}}{4} \sum \sin 2 A+\frac{R^{2}}{8} \sum \sin 4 A \\
& \sum \sin 4 A=\sin 4 A+\sin 4 B+\sin 4 C \\
&= 2 \sin (2(A+b)) \cos (2(A-B))+2 \sin 2 C \cos 2 C \\
&= 2 \sin (2 \pi-2 C) \cos (2(A-B))+2 \sin 2 C \cos 2 C
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{aligned}
& =-2 \sin 2 C \cos (2(A-B))+2 \sin 2 C \cos 2 C=2 \sin 2 C\{\cos 2 C-\cos (2(A-B))\} \\
& =4 \sin 2 C \sin (C+A-B) \sin (A-B-C)=4 \sin 2 C \sin (\pi-2 B) \sin (2 A-\pi) \\
& =-4 \sin 2 A \sin 2 B \sin 2 C \\
& \frac{R^{2}}{8}\left(\sum \sin 4 A\right)=\frac{R^{2}}{8}(-32 \sin A \sin B \sin C \cos A \cos B \cos C) \\
& =-2\left(2 R^{2} \sin A \sin B \sin C\right)(\cos A \cos B \cos C)=-2 \Delta \cos A \cos B \cos C \\
& \text { Again, } \frac{R^{2}}{4}\left(\sum \sin 2 A\right)=R^{2} \sin A \sin B \sin C=\frac{\Delta}{2} \text { given inequality } \Leftrightarrow \\
& \frac{\Delta}{2}-2 \Delta \cos A \cos B \cos C \geq \Delta\left(1-\cos ^{2} A-\cos ^{2} B-\cos ^{2} C\right) \\
& \Leftrightarrow 1-4 \cos A \cos B \cos C \geq 2-\left(2 \cos ^{2} A+2 \cos ^{2} B+2 \cos ^{2} C\right) \\
& \Leftrightarrow-1-4 \cos A \cos B \cos C \geq-(3+\cos 2 A+\cos 2 B+\cos 2 C) \\
& =-3+1+4 \cos A \cos B \cos C \Leftrightarrow 8 \cos A \cos B \cos C \leq 1 \Leftrightarrow \cos A \cos B \cos C \leq \frac{1}{8} \\
& \text { which is true (proved) }
\end{aligned}
$$

JP.043. Let a, b, c, d be nonnegative real numbers such as $a+b+c+d=4$. Prove that:
a) $a b+b c+c d+d a \leq 4$
b) $a^{2} b c+b^{2} c d+c^{2} d a+d^{2} a b \leq 4$
c) $a b c+b c d+c d a+d a b \leq 4$
d) $a b \sqrt{c}+b c \sqrt{d}+c d \sqrt{a}+d a \sqrt{b} \leq 4$

Proposed by Nguyen Tuan Anh - Viet Nam
Solution by Kevin Soto Palacios - Huarmey - Peru
Siendo: a, b, c, d números reales no negativos de tal manera que: $a+b+c+d=4$.

Probar que:

a) $a b+b c+c d+d a \leq 4$

$$
\begin{gathered}
\Rightarrow \boldsymbol{b}(\boldsymbol{a}+\boldsymbol{c})+\boldsymbol{d}(\boldsymbol{a}+\boldsymbol{c})=(\boldsymbol{b}+\boldsymbol{d})(\boldsymbol{a}+\boldsymbol{c}) \leq \frac{[(\boldsymbol{b}+\boldsymbol{d})+(\boldsymbol{a}+\boldsymbol{c})]^{2}}{4} \Rightarrow \\
\Rightarrow[(\boldsymbol{b}+\boldsymbol{d})-(\boldsymbol{a}+\boldsymbol{c})]^{2} \geq \mathbf{0}
\end{gathered}
$$

b) $a^{2} b c+b^{2} c d+c^{2} d a+d^{2} a b \leq 4$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Desde que:

$$
\begin{align*}
& \Rightarrow a^{2} b c+b^{2} c d+c^{2} d a+d^{2} a b-(a b+c d)(a c+b d)=b d(b-d)(c-a) \ldots \tag{A}\\
& \Rightarrow a^{2} b c+b^{2} c d+c^{2} d a+d^{2} a b-(a c+b d)(a d+b c)=a c(a-c)(b-d) \ldots \tag{B}
\end{align*}
$$

Multiplicando (A) $\times(\mathrm{B})$:

$$
\begin{gathered}
\left(\sum a^{2} b c-(a b+c d)(a c+b d)\right)\left(\sum a^{2} b c-(a c+b d)(a d+b c)\right)= \\
=-(a b c d)(b-d)^{2}(a-c)^{2} \leq 0
\end{gathered}
$$

Por la tanto se puede afirmar lo siguiente:

$$
\begin{gathered}
\Rightarrow a^{2} b c+b^{2} c d+c^{2} d a+d^{2} a b \leq(a b+c d)(a c+b d) v \\
a^{2} b c+b^{2} c d+c^{2} d a+d^{2} a b \leq(a c+b d)(a d+b c) \\
\text { Si: } a^{2} b c+b^{2} c d+c^{2} d a+d^{2} a b \leq(a b+c d)(a c+b d) \leq \\
\leq \frac{[(a b+c d)+(a c+b d)]^{2}}{4} \leq \frac{[(b+c)(a+d)]^{2}}{4} \leq \frac{16}{4}=4 \\
\text { Si: } a^{2} b c+b^{2} c d+c^{2} d a+d^{2} a b \leq(a c+b d)(a d+b c) \leq \\
\leq \frac{[(a c+b d)+(a d+b c)]^{2}}{4} \leq \frac{[(c+d)(a+b)]^{2}}{4} \leq \frac{16}{4}=4
\end{gathered}
$$

c) $a b c+b c d+c d a+d a b \leq 4$

Solo basta probar lo siguiente: $a b c+b c d+c d a+d a b=a c(b+d)+b d(a+c) \leq$

$$
\begin{gathered}
\leq a b+b c+c d+d a=(a+c)(b+d) \\
\Rightarrow 4 a c(b+d)+4 b d(a+c) \leq(a+c)(b+d)[(b+d)+(a+c)] \\
\Rightarrow(b+d)^{2}(a+c)+(a+c)^{2}(b+d) \leq 4(a+c) b d+4 a c(b+d) \\
\Rightarrow(a+c)(b-d)^{2}+(b+d)(a-c)^{2} \geq 0
\end{gathered}
$$

Por la tanto: $\Rightarrow a b c+b c d+c d a+d a b \leq a b+b c+c d+d a \leq 4$
d) $a b \sqrt{c}+b c \sqrt{d}+c d \sqrt{a}+d a \sqrt{b} \leq 4$. Desde que: $a, b, c, d \geq 0$. Por: $M A \geq M G$

$$
\Rightarrow a b \sqrt{c}+b c \sqrt{d}+c d \sqrt{a}+d a \sqrt{b} \leq \frac{a b+a b c}{2}+\frac{b c+b c d}{2}+\frac{c d+c d a}{2}+\frac{d a+d a b}{2} \leq \frac{8}{2}=4 \text { (LQQD) }
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

JP.044. Let a, b, c, d be nonnegative real numbers such as
$a+b+c+d=4$.
a) $a \sqrt{b c}+b \sqrt{c d}+c \sqrt{d a}+d \sqrt{a b} \leq 4$
b) $\sqrt{a b c}+\sqrt{b c d}+\sqrt{c d a}+\sqrt{d a b} \leq 4$
c) $\sqrt[n]{a b c}+\sqrt[n]{b c d}+\sqrt[n]{c d a}+\sqrt[n]{d a b} \leq 4 ;(n \in \mathbb{N})$
d) $a b \sqrt[n]{c}+b c \sqrt[n]{d}+c d \sqrt[n]{a}+d a \sqrt[n]{b} \leq 4 ;(n \in \mathbb{N})$

Proposed by Nguyen Tuan Anh - Vietnam

Solution 1 by Kevin Soto Palacios - Huarmey - Peru

Siendo: a, b, c, d números reales no negativos, de tal manera que:

$$
a+b+c+d=4
$$

a) $a \sqrt{b c}+b \sqrt{c d}+c \sqrt{d a}+d \sqrt{a b} \leq 4$. Desde que: $a, b, c, d \geq 0$. Por: MA \geq MG

$$
\begin{equation*}
\Rightarrow a \sqrt{b c}+b \sqrt{c d}+c \sqrt{d a}+d \sqrt{a b} \leq \frac{a+a b c}{2}+\frac{b+b c d}{2}+\frac{c+c d a}{2}+\frac{d+d a b}{2} \ldots \tag{A}
\end{equation*}
$$

Anteriormente ya se demostro lo siguiente: $\Rightarrow a b c+b c d+c d a+d a b \leq 4$
\Rightarrow Por lo tanto tenemos en (A): $\frac{a+a b c}{2}+\frac{b+b c d}{2}+\frac{c+c d a}{2}+\frac{d+d a b}{2} \leq 4$
\Rightarrow Por transitividad: $a \sqrt{b c}+b \sqrt{c d}+c \sqrt{d a}+d \sqrt{a b} \leq 4$
b) $\sqrt{a b c}+\sqrt{b c d}+\sqrt{c d a}+\sqrt{d a b} \leq 4 \Rightarrow$ Por: MA \geq MG

$$
\begin{equation*}
\Rightarrow \sqrt{a b c}+\sqrt{b c d}+\sqrt{c d a}+\sqrt{d a b} \leq \frac{a b+c}{2}+\frac{b c+d}{2}+\frac{c d+a}{2}+\frac{d a+b}{2} \ldots \tag{B}
\end{equation*}
$$

Asimismo también ya se ha demostrado lo siguiente: $\Rightarrow a b+b c+c d+d a \leq 4$.
Por lo tanto, por transitividad en (B): $\sqrt{a b c}+\sqrt{b c d}+\sqrt{c d a}+\sqrt{d a b} \leq 4$
c) $\sqrt[n]{a b c}+\sqrt[n]{b c d}+\sqrt[n]{c d a}+\sqrt[n]{d a b} \leq 4, n \in \mathbb{N}$

Sea: $f(x)=x^{\frac{1}{n}} \forall x \in<0,+\infty>\wedge$ considerando para: $n>1$
Calculamos la primera y segunda derivada: $f^{\prime}(x)=\frac{x^{\frac{1-n}{n}}}{n} \wedge f^{\prime \prime}(x)=\frac{x^{\frac{-2 n+1}{n}(-n+1)}}{n^{2}}<0$
Desde que: $\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})<0 \rightarrow$ entonces \boldsymbol{f} es una función concava y se cumple:
Desigualdad Ponderada de Jensen:

$$
f(a b c)+f(b c d)+f(c d a)+f(d a b) \leq 4 f\left(\frac{a b c+b c d+c d a+d a b}{4}\right)=
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
=4\left(\frac{a b c+b c d+c d a+d a b}{4}\right)^{\frac{1}{n}} \leq 4(1)^{n}=4
$$

d) $a b \sqrt[n]{c}+b c \sqrt[n]{d}+c d \sqrt[n]{a}+d a \sqrt[n]{b} \leq 4, n \in \mathbb{N}$

Siendo: $f(x)=x^{\frac{1}{n}}$ (Concava) $\forall x \in<0,+\infty>\wedge$ considerando para: $n>1$
Desigualdad Ponderada de Jensen: $\Rightarrow \boldsymbol{a b f}(\boldsymbol{c})+\boldsymbol{b c f}(\boldsymbol{d})+\boldsymbol{c d f}(\boldsymbol{a})+\boldsymbol{d a f}(b) \leq$

$$
\leq(a b+b c+c d+d a) f\left(\frac{a b c+b c d+c d a+d a b}{a b+b c+c d+d a}\right) \leq 4(1)^{n}=4
$$

Ya que: $f\left(\frac{a b c+b c d+c d a+d a b}{a b+b c+c d+d a}\right)=\left(\frac{a b c+b c d+c d a+d a b}{a b+b c+c d+d a}\right)^{\frac{1}{n}} \leq(1)^{n}=1$
Solution 2 by Soumava Chakraborty - Kolkata - India

$$
a, b, c, d \in \mathbb{R}^{+} \cup\{0\} \text {, then, given } a+b+c+d=4 \text {, }
$$

a) $a \sqrt{b c}+b \sqrt{c d}+c \sqrt{d a}+d \sqrt{a b} \leq 4$
b) $\sqrt{a b c}+\sqrt{b c d}+\sqrt{c d a}+\sqrt{d a b} \leq 4$

If $\mathbf{2}$ variables or $\mathbf{3}$ variables $=\mathbf{0}, \boldsymbol{L H S}$ of (a) and $L H S$ of (b) both $=\mathbf{0}<4$.
If $\mathbf{1}$ variable $=\mathbf{0}$, say $\boldsymbol{a}=\mathbf{0}$, then, $\boldsymbol{b}+\boldsymbol{c}+\boldsymbol{d}=\mathbf{4}$, with $\mathbf{0}<b, c, d<4$.
So, $\boldsymbol{b} \sqrt{\boldsymbol{c d}} \stackrel{G M-A M}{\leq} \frac{\boldsymbol{b}(\boldsymbol{c}+\boldsymbol{d})}{2}=\frac{\boldsymbol{b}(4-\boldsymbol{b})}{2} \leq \frac{2^{2}}{2}=2<4\left(\because \sqrt{\boldsymbol{b}(4-\boldsymbol{b})} \leq \frac{\boldsymbol{b}+4-\boldsymbol{b}}{2}=2, \boldsymbol{a s} 4-\boldsymbol{b}>0\right)$ which proves (a). Also, if $a=0, \sqrt[3]{b c d} \leq \frac{b+c+d}{3}=\frac{4}{3} \Rightarrow \boldsymbol{b c d} \leq \frac{64}{27} \Rightarrow \sqrt{b c d} \leq \frac{8}{3 \sqrt{3}}<4$,
which proves (b). Now, let's consider $a, b, c, d>0$
a) $a \sqrt{b c}+b \sqrt{c d}+c \sqrt{d a}+d \sqrt{a b}=\sqrt{a b} \sqrt{a c}+\sqrt{b c} \sqrt{b d}+\sqrt{c d} \sqrt{c a}+\sqrt{d a} \sqrt{b d}$

$$
\begin{aligned}
& \stackrel{G M \leq A M}{\leq}\left(\frac{a+b}{2}\right)\left(\frac{a+c}{2}\right)+\frac{(b+c)(b+d)}{4}+\frac{(c+d)(c+a)}{4}+\frac{(d+a)(b+d)}{4} \\
&=\frac{(a+c)}{4}(a+b+c+d)+\frac{(b+d)}{4}(b+c+d+a) \\
&\left.=\frac{(a+b+c+d)^{2}}{4}=\frac{16}{4}=4 \text { (equality at } a=b=c=d=1\right)
\end{aligned}
$$

(Proved)
b) $\sqrt{a b c}+\sqrt{b c d}+\sqrt{c d a}+\sqrt{d a b}=\sqrt{b c}(\sqrt{a}+\sqrt{d})+\sqrt{d a}(\sqrt{b}+\sqrt{c})$

$$
\stackrel{G M \leq A M}{\leq}\left(\frac{b+c}{2}\right)\left(\frac{a+1}{2}+\frac{d+1}{2}\right)+\left(\frac{d+a}{2}\right)\left(\frac{b+1}{2}+\frac{c+1}{2}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
=\frac{2(a b+b d+a c+c d)+2(a+b+c+d)}{4}
$$

$$
=\frac{2(a+d)(b+c)+8}{4} \leq \frac{2(4)+8}{4}=\frac{16}{4}=4(\text { equality at } a=b=c=d=1)
$$

$$
\left(\because \sqrt{(a+d)(b+c)} \stackrel{G M \leq A M}{\leq} \frac{a+d+b+c}{2}=\frac{4}{2}=2\right)
$$

(Proved)
$a, b, c, d \in \mathbb{R}^{+} \cup\{0\}$ and $a+b+c+d=4$. Then,
c) $\sqrt[n]{a b c}+\sqrt[n]{b c d}+\sqrt[n]{c d a}+\sqrt[n]{d a b} \leq 4$
d) $a b \sqrt[n]{c}+b c \sqrt[n]{d}+c d \sqrt[n]{a}+d a \sqrt[n]{b} \leq 4$

If exactly $\mathbf{2}$ or $\mathbf{3}$ variables $=\mathbf{0}, \boldsymbol{L} \boldsymbol{H S}$ of $\mathbf{c}), \mathbf{d})=\mathbf{0}<4$
If exactly 1 variable, say $a=0$, then $b+c+d=4$
Let us first prove c) for $\boldsymbol{a}=\mathbf{0}$ and $\mathbf{0}<b, c, d<4$
Case 1 : $n=1$

$$
\sqrt[3]{b c d} \stackrel{G \leq A}{\leq} \frac{b+c+d}{3}=\frac{4}{3} \Rightarrow b c d \leq \frac{64}{27}<4
$$

Case 2: $n=2$

$$
\sqrt{b c d} \leq \frac{8}{3 \sqrt{3}}<4
$$

Case 3: $\boldsymbol{n}=3$

$$
\sqrt[3]{b c d} \leq \frac{4}{3}<4
$$

Case 4: $n \geq 4$

$$
\begin{gathered}
\sqrt[n]{b c d}=\sqrt[n]{b c d \cdot \underbrace{1 \cdot 1 \cdot \ldots \cdot 1}_{n-3}} \\
\stackrel{G M \leq A M}{\leq} \frac{b+c+d+n-3}{n}=\frac{4+n-3}{n}=\frac{1+n}{n}=1+\frac{1}{n}<4
\end{gathered}
$$

Let us now prove d) for $\boldsymbol{a}=\mathbf{0} \& 0<b, c, d<4$

$$
\begin{gather*}
b c\left(d^{\frac{1}{n}}\right) \stackrel{G M \leq A M}{\leq} \frac{(b+c)^{2}}{4}\left(d^{\frac{1}{n}}\right)=\frac{(4-d)^{2}\left(d^{\frac{1}{n}}\right)}{4}(\because b+c=4-d) \\
=\frac{(4-d)^{\frac{1}{n}} d^{\frac{1}{n} \cdot(4-d)^{2-\frac{1}{n}}}}{4} \text { (1) } \tag{1}
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Now, $\sqrt{(4-d) d} \stackrel{G M \leq A M}{\leq} \frac{4+d+d}{2}=2 \Rightarrow(4-d) d \leq 4 \Rightarrow(4-d)^{\frac{1}{n}} d^{\frac{1}{n}} \leq 4^{\frac{1}{n}}$

$$
\begin{equation*}
\text { Also } 4-d<4(\because d>0) \Rightarrow(4-d)^{2-\frac{1}{n}}<4^{2-\frac{1}{n}}\left(\because 2-\frac{1}{n} \geq 1\right) \tag{i}
\end{equation*}
$$

(i) \times (ii) $\Rightarrow(4-d)^{\frac{1}{n}} d^{\frac{1}{n}}(4-d)^{2-\frac{1}{n}}<\left(4^{\frac{1}{n}}\right)\left(4^{2-\frac{1}{n}}\right) \Rightarrow \frac{(4-d)^{\frac{1}{n}} d^{\frac{1}{n}}(4-d)^{2-\frac{1}{n}}}{4}<\frac{(2)}{<} \frac{4^{2}}{4}=4$

$$
\Rightarrow b c\left(d^{\frac{1}{n}}\right) \stackrel{(1)}{\leq} \frac{(4-d)^{\frac{1}{n}} d^{\frac{1}{n}}(4-d)^{2-\frac{1}{n}}}{4}<4
$$

Hence, c), d) are proved for $\boldsymbol{a}=\mathbf{0}$ and $\mathbf{0}<b, c, d<4$
$\Rightarrow \mathbf{c}), \mathrm{d}$) holds true if exactly 1 variable $=0$
Let us now consider $\mathbf{0}<a, b, c, d<4$. Let us first prove (c)

$$
\text { Case 1: } n=1
$$

$a b c+b c d+c d a+d a b=b c(a+d)+d a(b+c)$
$\leq \frac{(b+c)^{2}(a+d)}{4}+\frac{(d+a)^{2}(b+c)}{4}(G M \leq A M)$
$=\frac{(\boldsymbol{b}+\boldsymbol{c})\{(\boldsymbol{b}+\boldsymbol{c})(\boldsymbol{a}+\boldsymbol{d})\}+(\boldsymbol{d}+\boldsymbol{a})\{(\boldsymbol{d}+\boldsymbol{a})(\boldsymbol{b}+\boldsymbol{c})\}}{4}$
$\leq \frac{4(b+c)+4(d+a)}{4}\left(\because \sqrt{(b+c)(a+d)} \leq \frac{b+c+d}{2}=\frac{4}{2}=2\right)$
$=\frac{4(a+b+c+d)}{4}=a+b+c+d=4$
Case 2: $n=2 \Rightarrow$ given inequality is:
$\sqrt{a b c}+\sqrt{b c d}+\sqrt{c d a}+\sqrt{d a b} \leq 4$, which is inequality (b), which was proved earlier.
Case 3: $n=3$
$\sqrt[3]{a b c}+\sqrt[3]{b c d}+\sqrt[3]{c d a}+\sqrt[3]{d a b}$
$\stackrel{G M \leq A M}{\leq} \frac{a+b+c}{3}+\frac{b+c+d}{3}+\frac{c+d+a}{3}+\frac{d+a+b}{3}=\frac{3(a+b+c+d)}{3}=4$
Case 4: $n \geq 4$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\left.\begin{array}{l}
\sqrt[n]{a b c}=\sqrt[n]{a b c \cdot \underbrace{1 \cdot 1 \cdot 1 \ldots 1}_{n-3}} \stackrel{G M \leq A M}{\leq} \frac{a+b+c+n-3}{n} \\
\sqrt[n]{b c d}=\sqrt[n]{b c d \cdot \underbrace{1 \cdot 1 \cdot 1 \ldots 1}_{n-3}} \stackrel{G \leq A}{\leq} \frac{b+c+d+n-3}{n} \\
\sqrt[n]{c d a}=\sqrt[n]{c d a \cdot \underbrace{1 \cdot 1 \cdot 1 \ldots 1}_{n-3}} \stackrel{G \leq A}{\leq} \frac{c+d+a+n-3}{n} \\
\sqrt[n]{d a b}=\sqrt[n]{d a b \cdot \underbrace{1 \cdot 1 \cdot 1 \ldots 1}_{n-3}} \leq \frac{G \leq A}{\leq} \frac{d+a+b+n-3}{n}
\end{array}\right\}
$$

$$
\sqrt[n]{a b c}+\sqrt[n]{b c d}+\sqrt[n]{c d a}+\sqrt[n]{d a b} \leq \frac{3(a+b+c+d)+4 n-12}{n}=\frac{4 n}{n}=4
$$

Let us prove (d) for $\mathbf{0}<a, b, c, d<4$
Case 1: $n=1 \Rightarrow(d)$ becomes $a b c+b c d+c d a+d a b \leq 4$

$$
a b c+b c d+c d a+d a b
$$

$$
\leq b c(a+d)+d a(b+c) \stackrel{G \leq A}{\leq} \frac{(b+c)^{2}(a+d)}{4}+\frac{(d+a)^{2}(b+c)}{4}
$$

$$
=\left(\frac{\boldsymbol{b}+\boldsymbol{c}}{4}\right)\{(\boldsymbol{b}+\boldsymbol{c})(\boldsymbol{a}+\boldsymbol{d})\}+\frac{(\boldsymbol{d}+\boldsymbol{a})}{4}\{(\boldsymbol{b}+\boldsymbol{c})(\boldsymbol{d}+\boldsymbol{a})\}
$$

$$
\leq \frac{b+c}{4} \cdot 4+\frac{d+a}{4} \cdot\left\{\because \sqrt{(b+c)(a+d)} \underline{G \leq A} \leq \frac{b+c+a+d}{2}=2\right\}
$$

$$
=a+b=c+d=4
$$

Case 2: $n \geq 2$

$$
\sqrt[n]{c}=\sqrt[n]{c \cdot \underbrace{1 \cdot 1 \cdot 1 \ldots 1}_{n-1}} \stackrel{G \leq A}{\leq} \frac{c+n-1}{n}
$$

Similarly, $\sqrt[n]{d} \leq \frac{d+n-1}{n}, \sqrt[n]{a} \leq \frac{a+n-1}{n}, \sqrt[n]{b} \leq \frac{b+n-1}{n}$

$$
\therefore a b \sqrt[n]{c}+b c \sqrt[n]{d}+c d \sqrt[n]{a}+d a \sqrt[n]{b}
$$

$$
\leq \frac{a b c+(n-1) a b+b c d+(n-1) b c+c d a+(n-1) c d+d a b+(n-1) d a}{n}
$$

$$
=\frac{a b c+b c d+c d a+d a b}{n}+\left(\frac{n-1}{n}\right)(a b+b c+c d+d a)
$$

$\leq \frac{4}{n}+\frac{n-1}{n}(a+c)(b+d)(\because a b c+b c d+c d a+d a b \leq 4$, as proved in Case (1) above)

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\leq \frac{4}{n}+\left(\frac{n-1}{n}\right) 4\left(\because \sqrt{(a+c)(b+d)} \stackrel{G \leq A}{\leq} \frac{a+c+b+d}{4}=2\right)=\frac{4+4 n-4}{n}=4 \text { (Done) }
$$

JP. 045. If $a, b, c \geq \frac{1}{3}$ then:

$$
\prod\left(a^{2}+\sum a^{3}+\sum a b-3 a b c\right) \geq(a+b)^{2}(b+c)^{2}(c+a)^{2}
$$

Proposed by Mihály Bencze - Romania
Solution by proposer
In inequality $x^{3}+y^{3}+z^{3}-3 x y z \geq 0$ we take $x=a-\frac{1}{3}, y=b-\frac{1}{3}, z=c-\frac{1}{3}$

$$
\text { and we obtain } a^{3}+b^{3}+c^{3}-3 a b c \geq a^{2}+b^{2}+c^{2}-a b-b c-c a \text { or }
$$

$$
\begin{gathered}
a^{3}+b^{3}+c^{3}+a b+b c+c a-3 a b c \geq a^{2}+b^{2}+c^{2} \text { or } \\
a^{2}+\sum a^{3}+\sum a b-3 a b c \geq 2 a^{2}+b^{2}+c^{2}=\left(a^{2}+b^{2}\right)+\left(a^{2}+c^{2}\right) \geq \\
\geq \frac{(a+b)^{2}}{2}+\frac{(a+c)^{2}}{2} \geq(a+b)(a+c) \text { therefore } \\
\prod\left(a^{2}+\sum a^{3}+\sum a b-3 a b c\right) \geq \prod(a+b)(a+c)=\prod(a+b)^{2}
\end{gathered}
$$

SP.031. If $\left(a_{n}\right)_{n \geq 1} \subset(0, \infty)$ is a sequence that

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{n a_{n}}=a \in(0, \infty)
$$

find:

$$
\begin{aligned}
& \Omega=\lim _{n \rightarrow \infty}\left(\sqrt[2 n+2]{a_{n+1}}-\sqrt[2 n]{a_{n}}\right) \sqrt{n} \\
& \\
& \quad \text { Proposed by D.M. Bătinețu - Giurgiu - Romania }
\end{aligned}
$$

Solution by Soumitra Mandal - Kolkata - India
Theorem: Let $(t, a) \in \mathbb{R}_{+} \times \mathbb{R}_{+}^{*}$. If $\left(a_{n}\right)_{n \geq 1} \in S\left(\mathbb{R}_{+}^{*}\right)$ is a $B-(t+1, a)$ sequence, then

$$
\begin{gathered}
\left(\sqrt[n]{a_{n}}\right)_{n \geq 1} \text { is a } L-\left(t, a(t+1), e^{-(t+1)}\right) \text { sequence. } \\
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{n \cdot a_{n}}=a \in(0, \infty) \\
\Omega=\lim _{n \rightarrow \infty}\left(\sqrt[2 n+2]{a_{n+1}}-\sqrt[2 n]{a_{n}}\right) \sqrt{n}=\left\{\lim _{n \rightarrow \infty}\left(\sqrt[2 n+2]{a_{n+1}}-\sqrt[2 n]{a_{n}}\right)\right\}\left(\lim _{n \rightarrow \infty} \sqrt{n}\right)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
=\left\{\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{c_{n+1}}-\sqrt[n]{c_{n}}\right)\right\}\left(\lim _{n \rightarrow \infty} \sqrt{n}\right) \text { where } c_{n}=\sqrt{a_{n}} \text { for all } n \geq 1 \\
\lim _{n \rightarrow \infty} \frac{c_{n+1}}{n \cdot c_{n}}=\left(\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}\right)\left(\lim _{n \rightarrow \infty} \sqrt{\frac{a_{n+1}}{n \cdot a_{n}}}\right)=\sqrt{a}\left(\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}\right)
\end{gathered}
$$

Hence, $\left(c_{n}\right)_{n \geq 1}$ is $B-\left(1, \sqrt{a}\left(\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}\right)\right)$ sequence, so by the above theorem

$$
\begin{gathered}
\left(\sqrt[n]{c_{n}}\right)_{n \geq 1} \text { is a } L-\left(0, \sqrt{a}\left(\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}\right) \cdot 1 \cdot e^{-1}\right) \text { sequence. } \\
\Omega=\frac{\sqrt{a}}{e}\left(\lim _{n \rightarrow \infty} \sqrt{n}\right)\left(\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}\right)=\frac{\sqrt{a}}{e} \lim _{n \rightarrow \infty}\left(\sqrt{n} \times \frac{1}{\sqrt{n}}\right)=\frac{\sqrt{a}}{e} \text { (Ans:) }
\end{gathered}
$$

SP.032. If $\left(a_{n}\right)_{n \geq 1} ;\left(b_{n}\right)_{n \geq 1} \subset(0, \infty)$ such that

$$
\lim _{n \rightarrow \infty} \frac{a_{n}+1}{n a_{n}}=a \in(0, \infty) ; \lim _{n \rightarrow \infty} \frac{b_{n+1}}{n b_{n}}=b \in(0, \infty)
$$

find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\sqrt[2 n+2]{a_{n+1} \cdot b_{n+1}}-\sqrt[2 n]{a_{n} \cdot b_{n}}\right)
$$

Proposed by D.M. Bătinețu - Giurgiu; Neculai Stanciu - Romania

Solution by Soumitra Mandal - Kolkata - India

Theorem: Let $(t, a) \in \mathbb{R}_{+} \times \mathbb{R}_{+}^{*}$. If $\left(a_{n}\right)_{n \geq 1} \in S\left(\mathbb{R}_{+}^{*}\right)$ is a $B-(t+1, a)$ sequence, then

$$
\left(\sqrt[n]{a_{n}}\right)_{n \geq 1} \text { is a } L-\left(t, a(t+1), e^{-(t+1)}\right) \text { sequence. }
$$

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{n \cdot a_{n}}=a \text { and } \lim _{n \rightarrow \infty} \frac{b_{n+1}}{n \cdot b_{n}}=b ; \Omega=\lim _{n \rightarrow \infty}\left(\sqrt[2 n+2]{a_{n+1} b_{n+1}}-\sqrt[2 n]{a_{n} b_{n}}\right)
$$

$$
=\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{c_{n+1}}-\sqrt[n]{c_{n}}\right), \text { where } c_{n}=\sqrt{a_{n} b_{n}} \text { for all } n \geq 1
$$

$$
\lim _{n \rightarrow \infty} \frac{c_{n+1}}{n \cdot c_{n}}=\lim _{n \rightarrow \infty} \frac{\sqrt{a_{n+1} b_{n+1}}}{n \cdot \sqrt{a_{n} b_{n}}}=\left(\lim _{n \rightarrow \infty} \sqrt{\frac{a_{n+1}}{n \cdot a_{n}}}\right)\left(\lim _{n \rightarrow \infty} \sqrt{\frac{b_{n+1}}{n \cdot b_{n}}}\right)=\sqrt{a b}
$$

Hence $\left(c_{n}\right)_{n \geq 1}$ is a $B-(1, \sqrt{a b})$ sequence, so by the above theorem $\left(\sqrt[n]{c_{n}}\right)_{n \geq 1}$ is a $L-\left(0, \sqrt{a b} \cdot 1 \cdot e^{-1}\right)$ sequence i.e. $L-\left(0, \frac{\sqrt{a b}}{e}\right)$ sequence. So $\Omega=\frac{\sqrt{a b}}{3}$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

SP.033. Let be: $r, s \in[0, \infty) ;\left(a_{n}\right)_{n \geq 1} ;\left(b_{n}\right)_{n \geq 1} \subset(0, \infty)$ such that

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n} \cdot n^{r}}=a \in(0, \infty) ; \lim _{n \rightarrow \infty} \frac{b_{n+1}}{b_{n} \cdot n^{s+1}}=b \in(0, \infty) ; x_{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

Find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\left(\sqrt[n+1]{a_{n+1} \cdot b_{n+1}}-\sqrt[n]{a_{n} b_{n}}\right) e^{-(r+s) x_{n}}\right)
$$

Proposed by D. M. Bătinețu - Giurgiu - Romania
Solution by Soumitra Mandal - Kolkata - India
Theorem: Let $(t, a) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}$. If $<a_{n}>_{n \geq 1} \in S\left(\mathbb{R}_{+}^{*}\right)$ is a $B-(t+1, a)$ sequence

$$
\text { then }\left\langle\sqrt[n]{a_{n}}>_{n \geq 1} \text { is a } L-\left(t, a(t+1), e^{-(t+1)}\right)\right. \text { sequence. }
$$

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{n^{r} \cdot a_{n}}=a \in(0, \infty) \text { and } \lim _{n \rightarrow \infty} \frac{b_{n+1}}{n^{s+1} \cdot b_{n}}=b \in(0, \infty)
$$

$$
\Omega=\lim _{n \rightarrow \infty}\left(\left(\sqrt[n+1]{a_{n+1} b_{n+1}}-\sqrt[n]{a_{n} b_{n}}\right) e^{-(r+s) x_{n}}\right)
$$

$$
=\left\{\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{a_{n+1} b_{n+1}}-\sqrt[n]{a_{n} b_{n}}\right)\right\}\left(\lim _{n \rightarrow \infty} e^{-(r+s) x_{n}}\right)
$$

Let $\boldsymbol{c}_{\boldsymbol{n}}=\boldsymbol{a}_{\boldsymbol{n}} \boldsymbol{b}_{\boldsymbol{n}}$ for all $\boldsymbol{n} \geq 1$

$$
\lim _{n \rightarrow \infty} \frac{c_{n+1}}{n \cdot c_{n}}=\left(\lim _{n \rightarrow \infty} n^{r+s}\right)\left(\lim _{n \rightarrow \infty} \frac{a_{n+1}}{n^{r} \cdot a_{n}}\right)\left(\lim _{n \rightarrow \infty} \frac{b_{n+1}}{n^{s+1} \cdot b_{n}}\right)=a b\left(\lim _{n \rightarrow \infty} n^{r+s}\right)
$$

Hence $<c_{n}>_{n \geq 1}$ is a $B-\left(1, a b\left(\lim _{n \rightarrow \infty} n^{r+s}\right)\right)$ is a sequence. Hence the above theorem yields $<\sqrt[n]{c_{n}}>_{n \geq 1}$ a $L-\left(0, a b\left(\lim _{n \rightarrow \infty} n^{r+s}\right) \cdot 1 \cdot e^{-1}\right)$ sequence.

$$
\Omega=\frac{a b}{e}\left(\lim _{n \rightarrow \infty} n^{r+s}\right)\left(\lim _{n \rightarrow \infty} e^{-(r+s) x_{n}}\right)=\frac{a b}{e}\left(\lim _{n \rightarrow \infty} n^{r+s} e^{-(r+s)\left(\gamma_{n}+\ln n\right)}\right)
$$

Where $\gamma_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\ln n$ is Euler's Constant $=\frac{a b}{e^{(r+s) \gamma_{n}+1}}$ (Ans :)

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
SP.034. Let $f:(0, \infty) \rightarrow(0, \infty)$ be a continuous function such that:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{f(x+1)}{x f(x)}=a \in(0, \infty), \text { and it does exists: } \\
& \lim _{x \rightarrow \infty} \frac{(f(x))^{\frac{1}{x}}}{x}, \text { find: } \\
& \Omega=\lim _{x \rightarrow \infty}\left(\frac{x+1}{(f(x+1))^{\frac{1}{2 x+2}}}-\frac{x}{(f(x))^{\frac{1}{2 x}}}\right) \cdot \sqrt{x}
\end{aligned}
$$

Proposed by D.M. Bătinețu - Giurgiu - Romania

Solution by Marian Ursărescu - Romania

$$
\begin{align*}
& \text { Let } a_{n}=f(n) \Rightarrow \lim _{n \rightarrow \infty} \frac{a_{n+1}}{n a_{n}}=a \wedge \exists \lim _{n \rightarrow \infty} \frac{\sqrt[n]{a_{n}}}{n} \text {. We must calculate: } \\
& \Omega=\lim _{n \rightarrow \infty}\left(\frac{n+1}{\sqrt[2 n+2]{a_{n+1}}}-\frac{n}{\sqrt[2 n]{a_{n}}}\right) \sqrt{n} \\
& \Omega=\lim _{n \rightarrow \infty}\left(e^{\ln \frac{n+1}{2 n+2} \sqrt{a_{n+1}}}-e^{\ln \frac{n}{2 n} \sqrt{a_{n}}}\right) \sqrt{n}=\lim _{n \rightarrow \infty} e^{\frac{n}{\sqrt[2 n]{a_{n}}}}\left(e^{\ln \frac{n+1}{2 n+2} \sqrt{a_{n+1}}-\ln \frac{n}{2 n} \sqrt{a_{n}}}-1\right) \sqrt{n}= \\
& \left.=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt[2 n]{a_{n}}} \cdot n \cdot\left(e^{\ln \left(\frac{n+1}{n} \cdot \frac{2 n+\sqrt{a_{n}}}{2 n+2} \sqrt{a_{n+1}}\right.}\right)-1\right) \\
& \lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt[2 n]{a_{n}}}=\lim _{n \rightarrow \infty} \frac{\sqrt[2 n]{n^{n}}}{\sqrt[2 n]{a_{n}}}=\sqrt{\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{n}}{a_{n}}} \stackrel{c . D .}{=} \sqrt{\lim _{n \rightarrow \infty} \frac{(n+1)^{n+1}}{a_{n+1}} \cdot \frac{a_{n}}{n^{n}}}=.} \\
& =\sqrt{\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{n} \cdot \frac{a_{n}(n+1)}{a_{n+1}}}=\sqrt{\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \cdot \frac{a_{n} \cdot n}{a_{n+1}} \cdot \frac{n+1}{n}}=\sqrt{\frac{e}{a}} \tag{3}\\
& \lim _{n \rightarrow \infty} n\left(e^{\ln \left(\frac{n+1}{n} \cdot \frac{\sqrt[2 n]{a_{n}}}{\sqrt[2 n+2]{a_{n+1}}}\right)}-1\right)==\lim _{n \rightarrow \infty} \frac{\left(e^{\left.\frac{\ln \frac{\sqrt[2 n]{a_{n}}}{\sqrt[2 n+1]{a_{n+1}}}-1}{}\right)}\right.}{\ln \frac{\sqrt[2 n]{a_{n}}}{\sqrt[2 n+2]{a_{n+1}}}} \cdot \ln \frac{\sqrt[2 n]{a_{n}}}{\sqrt[2 n+2]{a_{n+1}}}= \\
& =\lim _{n \rightarrow \infty} n \ln \sqrt{\frac{\sqrt[n]{a_{n}}}{\sqrt[n+1]{a_{n+1}}}}=\lim _{n \rightarrow \infty} \frac{n}{2} \ln \left(\frac{\sqrt[n]{a_{n}}}{\sqrt[n+1]{a_{n+1}}}\right)=
\end{align*}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gather*}
=\frac{1}{2} \lim _{n \rightarrow \infty} \ln \left(\frac{\sqrt[n]{a_{n}}}{\sqrt[n+1]{a_{n+1}}}\right)^{n}=\frac{1}{2} \ln \left(\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{a_{n+1}} \cdot \sqrt[n+1]{a_{n+1}}\right)\right) \\
=\frac{1}{2} \ln \left(\lim _{n \rightarrow \infty} \frac{n a_{n}}{a_{n+1}} \cdot \frac{1}{n} \sqrt[n+1]{a_{n+1}}\right)= \\
=\frac{1}{2} \ln \left(\lim _{n \rightarrow \infty} \frac{n a_{n}}{a_{n+1}} \cdot \frac{n+1}{n} \cdot \frac{\sqrt[n+1]{a_{n+1}}}{n+1}\right)=\frac{1}{2} \ln \left(\frac{1}{a} \cdot 1 \cdot \frac{a}{e}\right)=\frac{-1}{2} \tag{4}
\end{gather*}
$$

For (1) $+(2)+(3)+(4) \Rightarrow \Omega=-\frac{1}{2} \sqrt{\frac{e}{a}}$

SP.035. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{\lfloor\sqrt{44}\rfloor+\lfloor\sqrt{4444}\rfloor+\cdots+\overbrace{\lfloor\sqrt{44 \ldots 44}\rfloor}^{2 n \text { digits } 4}}{10^{n}}
$$

where $\lfloor x\rfloor$ denotes the integer part of x.
Proposed by Nguyen Viet Hung - Hanoi - Vietnam

Solution by Henry Ricardo - New York - USA
To simplify things typographically, we introduce the notation ($\boldsymbol{m m} \ldots m m)_{k}$ to denote the \boldsymbol{k}-digit number each of whose digits is \boldsymbol{m}.

First we see that for any positive integer k

$$
\begin{aligned}
&(44 \ldots 44)_{2 k}=(44 \ldots 44)_{k} \cdot 10^{k}+(44 \ldots 44)_{k} \\
&=(44 \ldots 44)_{k} \cdot\left(10^{k}+1\right)=4(11 \ldots 11)_{k} \cdot\left(9(11 \ldots 11)_{k}+2\right) \\
&= 36 \cdot(11 \ldots .11)_{k}^{2}+8(11 \ldots 11)_{k}=(66 \ldots 66)_{k}^{2}+8(11 \ldots 11)_{k} \\
&<(66 \ldots 66)_{k}^{2}+8(11 \ldots 11)_{k}+\frac{4}{9}=\left((66 \ldots 66)_{k}+\frac{2}{3}\right)^{2}
\end{aligned}
$$

Thus $(66 \ldots 66)_{k}^{2}<(44 \ldots 44)_{2 k}<\left((66 \ldots 66)_{k}+\frac{2}{3}\right)^{2}$, implying that $(66 \ldots 66)_{k}<\sqrt{(44 \ldots 44)_{2 k}}<(66 \ldots 66)_{k}+\frac{2}{3}$ and so $\left\lfloor\sqrt{(44 \ldots 44)_{2 k}}\right\rfloor=(66 \ldots 66)_{k}$.

$$
\text { Now we have } \frac{\sum_{k=1}^{n}\left|\sqrt{(44 . .44)_{2 k}}\right|}{10^{n}}=\frac{6 \cdot \sum_{k=1}^{n}(11 . .11)_{k}}{10^{n}}=\frac{6 \cdot \sum_{k=1}^{n}\left(\frac{10^{k}-1}{9}\right)}{10^{n}}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
=\frac{2}{3}\left(\frac{\sum_{k=1}^{n} 10^{k}-n}{10^{n}}\right)=\frac{2}{3} \frac{\left(\frac{10^{n+1}-1}{9}-n\right)}{10^{n}}=\frac{2}{27}\left(\frac{10^{n+1}-1-9 n}{10^{n}}\right)=\frac{2}{27}\left(10-\frac{1}{10^{n}}-\frac{9 n}{10^{n}}\right) \rightarrow \frac{20}{27} \text { as } n \rightarrow \infty
$$

SP.036. Let a, b, c be positive real numbers such that

$$
3(a+b)(b+c)(c+a) \geq \frac{8}{\sqrt[8]{a^{3}+b^{3}+c^{3}}}
$$

Prove that $a+b+c \geq \sqrt[3]{9}$.
Proposed by Nguyen Viet Hung - Hanoi - Vietnam

Solution 1 by Anas Adlany - El Jadida- M orroco

We have known that $(a+b+c)^{3}:=\sum a^{3}+3 \Pi(a+b) \geq \sum a^{3}+\frac{8}{\sqrt[8]{a^{3}+b^{3}+c^{3}}}$

$$
\geq 9 \sqrt[9]{\left(\sum a^{3}\right)\left(\frac{1}{\sqrt[8]{a^{3}+b^{3}+c^{3}}}\right)^{8}} \text {. Thus, } a+b+c \geq \sqrt[3]{9} \text {. Hence proved. }
$$

Solution 2 by Soumitra Mandal - Kolkata - India

$$
\begin{gathered}
3(a+b)(b+c)(c+a) \geq \frac{8}{\sqrt[8]{a^{3}+b^{3}+c^{3}}} \\
\Rightarrow \sum_{c y c} a^{3}+3 \prod_{c y c}(a+b) \geq \frac{8}{\sqrt[8]{a^{3}+b^{3}+c^{3}}}+\left(a^{3}+b^{3}+c^{3}\right) \\
\geq(8+1) \sqrt[9]{\left\{\frac{1}{\sqrt[8]{a^{3}+b^{3}+c^{3}}}\right\}^{8}\left(a^{3}+b^{3}+c^{3}\right)}=9 \\
\Rightarrow(a+b+c)^{3} \geq 9 \Rightarrow a+b+c \geq \sqrt[3]{9} \text { (proved). Equality at } a=b=c=\frac{1}{\sqrt[3]{3}}
\end{gathered}
$$

SP.037. Compute the limit

$$
\lim _{n \rightarrow \infty} \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} n \ln \left(1+\frac{\sin \theta \sec ^{2} \theta}{n}\right)^{\cos \theta}\left(1+\frac{\cos \theta}{n}\right)^{\cos \theta}\left(1+\frac{\cot \theta}{n}\right)^{\sin \theta \sec ^{2} \theta} d \theta
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution by Mirza Uzair Baig-Lahore-Pakistan

It is easy to prove the following asymptotic expansions

$$
\begin{gathered}
n \ln \left(1+\frac{a}{n}\right)^{b}=\left(\frac{a}{n}\right)^{b}\left(\frac{a^{2} b(3 b+5)}{24 n}-\frac{a b}{2}+n+O\left(n^{-2}\right)\right) \\
=\frac{a^{2+b} b(3 b+5)}{24 n^{1+b}}-\frac{a^{1+b} b}{2 n^{b}}+a^{b} n^{1-b}+O\left(n^{-2-b}\right) \\
\left(1+\frac{a}{n}\right)^{b}=1+\frac{a b}{n}+O\left(n^{-2}\right) .
\end{gathered}
$$

Now now that

$$
\begin{aligned}
n \ln \left(1+\frac{\sin \theta \sec ^{2} \theta}{n}\right)^{\cos \theta} & =n\left(\frac{\tan (x)+\sec (x)}{n}\right)^{\cos (x)}+O\left(n^{-\delta}\right) \\
\left(1+\frac{\cos \theta}{n}\right)^{\cot \theta} & =1+\frac{\cos \theta \cot \theta}{n}+O\left(n^{-2}\right) \\
\left(1+\frac{\cot \theta}{n}\right)^{\sin \theta \sec ^{2} \theta} & =1+\frac{\sin \theta \sec ^{2} \theta \cot \theta}{n}+O\left(n^{-2}\right)
\end{aligned}
$$

For $\boldsymbol{x} \in\left(\frac{\pi}{4}, \frac{\pi}{3}\right)$ we have, $\boldsymbol{n}^{1-\cos (x)} \rightarrow \infty, \boldsymbol{n} \rightarrow \infty$.
Thus limit is $+\infty$.

SP.038. If $x, y, z \in \mathbb{R} \backslash\{1\}$ and $n \in \mathbb{N}$ then:

$$
\frac{1}{3} \sum_{\text {cyclic }}(x-2 y-2 z)\left(\frac{x^{n+1}-1}{x-1}\right)+\sqrt{x^{2}+y^{2}+z^{2}} \sum_{k=0}^{n} \sqrt{x^{2 k}+y^{2 k}+z^{2 k}} \geq 0
$$

Proposed by Mihály Bencze - Romania

Solution by proposer

First we show that if $a, b, c, x, y, z \in \mathbb{R}$ then:

$$
\begin{equation*}
a x+b y+c z+\sqrt{\left(a^{2}+b^{2}+c^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)} \geq \frac{2}{3}(a+b+c)(x+y+z) \tag{1}
\end{equation*}
$$

Let us $t=\sqrt{\frac{x^{2}+y^{2}+z^{2}}{a^{2}+b^{2}+c^{2}}}, x=p t, y=q t, z=r t \Rightarrow a^{2}+b^{2}+c^{2}=p^{2}+q^{2}+r^{2}$ and (1)
becomes $a p+b q+c r+a^{2}+b^{2}+c^{2} \geq \frac{2}{3}(c+b+c)(p+q+r)$ or

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$4(a+b+c)(p+q+r) \leq((a+b+c)+(p+q+r))^{2}$ it suffices to prove that:
$(a+b)^{2}+(b+q)^{2}+(c+r)^{2} \geq \frac{1}{3}((a+p)+(b+q)+(c+r))^{2}$. This is clearly true.
In (1) we take $a=x^{k}, b=y^{k}, c=z^{k} \Rightarrow$

$$
\begin{gathered}
\sum_{k=0}^{n}\left(x^{k+1}+y^{k+1}+z^{k+1}+\sqrt{\left(x^{2}+y^{2}+z^{2}\right)\left(x^{2 k}+y^{2 k}+z^{2 k}\right)}\right) \geq \\
\geq \frac{2}{3} \sum_{k}^{n}(x+y+z)\left(x^{k}+y^{k}+z^{k}\right) \text { or } \\
\frac{1}{3} \sum_{\text {cyclic }}(x-2 y-2 z)\left(\frac{x^{n+1}-1}{x-1}\right)+\sqrt{x^{2}+y^{2}+z^{2}} \sum_{k=0}^{n} \sqrt{x^{2 k}+y^{2 k}+z^{2 k}} \geq 0
\end{gathered}
$$

SP.039. Prove that if $a, b, c \in(1, \infty)$ then:

$$
e^{\left|\ln \frac{a b}{c}\right|} \cdot e^{\left|\ln \frac{a c}{b}\right|} \cdot e^{\left|\ln \frac{b c}{a}\right|} \cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{3} \geq 27
$$

Proposed by Daniel Sitaru - Romania

Solution by Nguyen Phuc Tang - Hanoi - Vietnam

$$
\begin{gathered}
\text { We have }\left|\ln \frac{a b}{c}\right|+\left|\ln \frac{a c}{b}\right|+\left|\ln \frac{b c}{a}\right| \geq\left|\ln \frac{a b}{c}+\ln \frac{a c}{b}+\ln \frac{b c}{a}\right|=\ln (a b c) \\
\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \frac{3}{\sqrt[3]{a b c}}(\mathrm{AM-GM}) \\
L H S=e^{\left|\ln \frac{a b}{c}\right|+\left|\ln \frac{a c}{b}\right|+\left|\ln \frac{b c}{a}\right|}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{3} \geq e^{\ln (a b c)} \cdot \frac{27}{a b c} \geq a b c \cdot \frac{27}{a b c}=27
\end{gathered}
$$

Equality holds if $a=b=c$.

SP.040. Prove that if $a, b, c \in(\sqrt{3}, \infty)$ then:

$$
\frac{\ln (b c)}{\ln \left(e a^{2}\right)}+\frac{\ln (a c)}{\ln \left(e b^{2}\right)}+\frac{\ln (a b)}{\ln \left(e c^{2}\right)} \geq 2 \sum \frac{\ln c}{1+2 \sqrt{\ln a \ln b}}
$$

Solution by Nguyen Phuc Tang - Hanoi - Vietnam

We have $\ln a \geq 1, \ln b \geq 1, \ln c \geq 1$. The given inequality is equivalent to

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gather*}
\frac{\ln b+\ln c}{1+2 \ln a}+\frac{\ln a+\ln c}{1+2 \ln b}+\frac{\ln b+\ln a}{1+2 \ln c} \geq \sum \frac{\ln c}{1+2 \sqrt{\ln a \ln b}} \\
\Leftrightarrow \sum(\ln c)\left(\frac{1}{1+2 \ln a}+\frac{1}{1+2 \ln b}-\frac{2}{1+2 \sqrt{\ln a \ln b}}\right) \geq 0 \quad(*) \tag{*}
\end{gather*}
$$

(*) is true, by the well - known inequality
$\frac{1}{1+x^{2}}+\frac{1}{1+y^{2}} \geq \frac{2}{1+x y}$ for all $x, y>0 \& x y \geq 1$. Equality holds if $a=b=c$.

SP.041. Let be $f:[0,1] \rightarrow \mathbb{R}, f$ continuous on $[0,1]$. Compute:

$$
\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n}\left((n-k+1)^{2} \sum_{j=1}^{k} f\left(\frac{j}{n}\right)\right)}{n^{2}(n+1)(2 n+1)}
$$

Proposed by Daniel Sitaru - Romania
Solution by Ravi Prakash - New Delhi - India

$$
\begin{gather*}
\sum_{k=1}^{n}(n-k+1)^{2} \sum_{j=1}^{k} f\left(\frac{j}{n}\right)= \\
=n^{2} f\left(\frac{1}{n}\right)+(n-1)^{2}\left[f\left(\frac{1}{n}\right)+f\left(\frac{2}{n}\right)\right]+(n-2)^{2}\left[f\left(\frac{1}{n}\right)+f\left(\frac{2}{n}\right)+f\left(\frac{3}{n}\right)\right]+\cdots \\
\ldots+1^{2}\left[f\left(\frac{1}{n}\right)+f\left(\frac{2}{n}\right)+\cdots+f\left(\frac{n}{n}\right)\right]= \\
=\sum_{k=1}^{n} f\left(\frac{k}{n}\right)\left[1^{1}+2^{2}+\cdots+(n-k+1)^{2}\right] \text { (1) } \tag{1}\\
\text { We know } \frac{1}{3} k^{3}<1^{2}+2^{2}+\cdots+k^{2}<\frac{1}{3}(k+1)^{3} \\
\frac{1}{3}(n-k+1)^{3}<\sum_{j=1}^{n-k+1} j^{2}<\frac{1}{3}(n-k+2)^{3} \tag{2}
\end{gather*}
$$

Using (1), we get $\sum_{k=1}^{n} \frac{1}{3} \frac{(n-k+1)^{3} f\left(\frac{k}{n}\right)}{n^{2}(n+1)(2 n+1)}<J<\sum_{k=1}^{n} \frac{1}{3} \frac{(n-k+2)^{3} f\left(\frac{k}{n}\right)}{n^{2}(n+1)(2 n+1)}$
When $J=\frac{\sum_{k=1}^{n}\left((n-k+1)^{2} \sum_{j=1}^{k} f\left(\frac{j}{n}\right)\right)}{n^{2}(n+1)(2 n+1)}$. Now, $\sum_{k=1}^{n} \frac{1}{3} \cdot \frac{(n-k+1)^{3} f\left(\frac{k}{n}\right)}{n^{2}(n+1)(2 n+1)}=$

$$
=\frac{1}{6} \sum_{k=1}^{n} \frac{1}{n\left(1+\frac{1}{n}\right)\left(1+\frac{1}{2 n}\right)}\left(1+\frac{1}{n}-\frac{k}{n}\right)^{3} f\left(\frac{k}{n}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
=\frac{1}{6} \cdot \frac{1}{\left(1+\frac{1}{n}\right)\left(1+\frac{1}{2 n}\right)} \cdot \frac{1}{n} \cdot \sum_{k=1}^{n}\left\{\left(1-\frac{k}{n}\right)^{3} f\left(\frac{k}{n}\right)+\frac{3}{n}\left(1-\frac{k}{n}\right)^{2} f\left(\frac{k}{n}\right)+\frac{3}{n^{2}}\left(1-\frac{k}{n}\right) f\left(\frac{k}{n}\right)+\frac{1}{n^{3}} f\left(\frac{k}{n}\right)\right\} \\
\rightarrow \frac{1}{6}\left[\int_{0}^{1}(1-x)^{3} f(x) d x+(0) \int_{0}^{1}(1-x)^{2} f(x) d x+(0) \int_{0}^{1}(1-x) f(x) d x+(0) \int_{0}^{1} f(x) d x\right]= \\
=\frac{1}{6} \int_{0}^{1}(1-x)^{3} f(x) d x
\end{gathered}
$$

Similarly, expression on RHS of (2) approaches:

$$
\begin{aligned}
\frac{1}{6} \int_{0}^{1}(1-x)^{3} f(x) d x ; J & \rightarrow \frac{1}{6} \int_{0}^{1}(1-x)^{3} f(x) d x \\
\text { as } n & \rightarrow \infty
\end{aligned}
$$

SP.042. If $A, B \in M_{2}(R)$ then:

$$
\begin{aligned}
\operatorname{det}\left(x I_{2}\right. & +y A B+z B A)+\operatorname{det}\left(y I_{2}+z A B+x B A\right)+\operatorname{det}\left(z I_{2}+x A B+y B A\right) \geq \\
& \geq(x y+y z+z x)\left((1+\operatorname{Tr}(A B))^{2}+2 \operatorname{det}(A B)-\operatorname{Tr}\left(A^{2} B^{2}\right)\right)
\end{aligned}
$$

for any $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}$

Proposed by Mihály Bencze - Romania

Solution by proposer

With elementary calculus holds:

$$
\begin{gathered}
\operatorname{det}\left(x I_{2}+y A B+z B A\right)=x^{2}+x(y+z) \operatorname{Tr}(A B)+\left(y^{2}+z^{2}\right) \operatorname{det}(A B)+ \\
+y z\left((\operatorname{Tr}(A B))^{2}-\operatorname{Tr}\left(A^{2} B^{2}\right)\right) \text { and using the inequality } x^{2}+y^{2}+z^{2} \geq x y+y z+z x \\
\text { holds } \operatorname{det}\left(x I_{2}+y A B+z B A\right)+\operatorname{det}\left(y I_{2}+z A B+x B A\right)+\operatorname{det}\left(z I_{2}+x A B+y B A\right)= \\
=\left(x^{2}+y^{2}+z^{2}\right)+2(x y+y z+z x) \operatorname{Tr}(A B)+2\left(x^{2}+y^{2}+z^{2}\right) \operatorname{det}(A B)+ \\
+(x y+y z+z x)\left((\operatorname{Tr}(A B))^{2}-\operatorname{Tr}\left(A^{2} B^{2}\right)\right) \geq(x y+y z+z x)(1+2 \operatorname{Tr}(A B)+\operatorname{Tr}(A B))^{2}+ \\
+2 \operatorname{det}(A B)-\operatorname{Tr}\left(A^{2} B^{2}\right)=(x y+y z+z x)\left((1+\operatorname{Tr}(A B))^{2}+2 \operatorname{det}(A B)-\operatorname{Tr}\left(A^{2} B^{2}\right)\right)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
SP.043. If $x, y, z, a, b, c>0$ then:

$$
\begin{gathered}
x^{3} y+y^{3} z+z^{3} x \geq\left(x^{3 a+c} y^{3 b+a} z^{3 c+b}\right)^{\frac{1}{a+b+c}}+\left(y^{3 a+c} z^{3 b+a} x^{3 c+b}\right)^{\frac{1}{a+b+c}}+ \\
+\left(z^{3 a+c} x^{3 b+a} y^{3 c+b}\right)^{\frac{1}{a+b+c}}
\end{gathered}
$$

Proposed by Mihály Bencze - Romania

Solution by proposer

We have: $a x^{3} y+b y^{3} z+c z^{3} x \geq(a+b+c)\left(\left(x^{3} y\right)^{a}\left(y^{3} z\right)\left(z^{3} x\right)^{c}\right)^{\frac{1}{a+b+c}}=$

$$
\begin{gathered}
=(a+b+c)\left(x^{3 a+c} y^{3 b+a} z^{3 c+b}\right)^{\frac{1}{a+b+c}} \Rightarrow(a+b+c) \sum x^{3} y= \\
=\sum\left(a x^{3} y+b y^{3} z+c z^{3} x\right) \geq(a+b+c) \sum\left(x^{3 a+c} y^{3 b+a} z^{3 c+b}\right)^{\frac{1}{a+b+c}}
\end{gathered}
$$

SP.044. In all convex quadrilateral $A B C D$ we have:

$$
\begin{aligned}
& (-a+b+c+d)^{\alpha}+(a-b+c+d)^{\alpha}+(a+b-c+d)^{\alpha}+(a+b+c-d)^{\alpha} \geq \\
& \geq\left(\frac{a+b+c}{3}+d\right)^{\alpha}+\left(\frac{b+c+d}{3}+\boldsymbol{a}\right)^{\alpha}+\left(\frac{c+d+a}{3}+b\right)^{\alpha}+\left(\frac{d+a+b}{3}+\boldsymbol{c}\right)^{\alpha}
\end{aligned}
$$

for all $a \geq 1$.
Proposed by Mihály Bencze - Romania

Solution by proposer

$$
\frac{x_{1}^{\alpha}+x_{2}^{\alpha}+x_{3}^{\alpha}}{3} \geq\left(\frac{x_{1}+x_{2}+x_{3}}{3}\right)^{\alpha} \text { for all } x_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}>0
$$

If $x_{1}=-a+b+c+d, x_{2}=a-b+c+d, x_{3}=a+b-c+d, x_{4}=a+b+c-d$

$$
\text { and } x_{1}, x_{2}, x_{3}, x_{4}>0 \text { then } x_{1}^{\alpha}+x_{2}^{\alpha}+x_{3}^{\alpha}+x_{4}^{\alpha}=\sum_{\text {cyclic }} \frac{x_{1}^{\alpha}+x_{2}^{\alpha}+x_{3}^{\alpha}}{3} \geq \sum\left(\frac{x_{1}+x_{2}+x_{3}}{3}\right)^{\alpha}
$$

$$
\text { or } \sum(-a+b+c+d)^{\alpha} \geq \sum\left(\frac{a+b+c}{3}+d\right)^{\alpha} \text { etc. }
$$

SP.045. If $a, b, c \in(0,1)$ then:

$$
\frac{1}{\left(a\left(1-a^{4}\right)\right)^{4 n}}+\frac{1}{\left(b\left(1-b^{4}\right)\right)^{4 n}}+\frac{1}{\left(c\left(1-c^{4}\right)\right)^{4 n}} \geq 3\left(\frac{3125}{256}\right)^{n}
$$

Proposed by Mihály Bencze - Romania

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution by proposer

$$
\begin{gathered}
\text { We have: } \frac{1}{1-a^{4}} \geq \frac{5 \sqrt[5]{5}}{4} a \Leftrightarrow a \sqrt[5]{4}=x, \frac{1}{5-x^{4}} \geq \frac{5 x}{4} \Leftrightarrow \\
\Leftrightarrow(x-1)^{2}\left(x^{3}+2 x^{2}+3 x+4\right) \geq 0 \Rightarrow \frac{1}{a\left(1-a^{4}\right)} \geq \frac{5 \sqrt[5]{5}}{4} \Rightarrow \\
\sum \frac{1}{\left(a\left(1-a^{4}\right)\right)^{4 n}} \geq \sum\left(\frac{5 \sqrt[5]{5}}{4}\right)^{4 n}=3\left(\frac{3125}{256}\right)^{n}
\end{gathered}
$$

UP.031. If $A, B, C \in M_{n}(\mathbb{C}) ; n \geq 2 ; \operatorname{det} A \neq 0 ; A B=B A ; A C=C A ; A^{2} B+C=A B C$ then $B C=C B$.

Propsed by D.M. Bătinețu - Giurgiu - Romania

Solution by Soumitra Mandal - Kolkata - India

$$
A B=B A ; A C=C A \text { and } A^{2} B+C=A B C
$$

Now $A^{2} B+C=A B C \Rightarrow\left(A^{2} B+C\right) \cdot B=A B C B \Rightarrow A^{2} B^{2}+C B=A B C B$

$$
\Rightarrow A(A B) B+C B=A B C B \Rightarrow(A B)^{2}+C B=A B C B[\because A B=B A]
$$

$$
\begin{equation*}
\Rightarrow C B=A B(C B-A B) . \tag{1}
\end{equation*}
$$

Again, $A^{2} B+C=A B C \Rightarrow B \cdot\left(A^{2} B+C\right)=B A B C \Rightarrow B A^{2} B+B C=B A B C$

$$
\Rightarrow(B A) A B+B C=B A B C \Rightarrow(B A)^{2}+B C=B A B C[\because A B=B A]
$$

$$
\Rightarrow B C=B A(B C-B A) \Rightarrow B C=A B(B C-A B)[\because A B=B A] \ldots \text { (2) }
$$

So, from (2) - (1): BC - CB $=A B(B C-C B)$
$\operatorname{det}(B C-C B)=\operatorname{det}(A B) \operatorname{det}(B C-C B) \Rightarrow \operatorname{det}(B C-C B)(1-\operatorname{det}(A B))=0$
Now, now $\operatorname{det}(A B) \neq 1$ since if $\operatorname{det}(A B)=1$ the $A B=I_{n} \Rightarrow B=A^{-1}$
so from relation $A^{2} B+C=A B C$ we would have got $A=O_{n}$ but $\operatorname{det}(A) \neq 0$, hence a contradiction. So, $\operatorname{det}(A B)=1$ is neglected.
$\therefore \operatorname{det}(B C-C B)=0 \Rightarrow B C=C B$ (proved)

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

UP.032. If $x, y, z \in \mathbb{C}^{*} ; A, B, C \in M_{n}(\mathbb{C}) ; n \geq 2 ; x^{2} A+B=x A B ; y^{2} B+C=y B C$;

$$
z^{2} C+A=z C A \text { then: }
$$

$$
\frac{x y(y z+z)+1}{y z} A+\frac{y z(z x+2)+1}{z x} B+\frac{z x(x y+2)+1}{x y} C=3 A B C
$$

Proposed by D.M. Bătinețu - Giurgiu, Neculai Stanciu - Romania
Solution by Marian Ursărescu - Romania
Theorem: If $M, N \in M_{n}(\mathbb{C})$ such that $M N=I_{n} \Rightarrow N M=I_{n}$, then $M N=N M$

$$
\begin{gathered}
x^{2} A+B=x A B \Rightarrow x A B-x^{2}-B=O_{n} \Rightarrow x A\left(B-x I_{n}\right)-B+x I_{n}=x I_{n} \\
\Rightarrow\left(x A-I_{n}\right)\left(B-x I_{n}\right)=x I_{4} \Rightarrow\left(B-x I_{n}\right)\left(x A-I_{n}\right)=x I_{n} \Rightarrow
\end{gathered}
$$

$\Rightarrow x B A-B-x^{2} A+x I_{n}=I_{n} \Rightarrow x B A=x^{2} A+B \Rightarrow A B=B A$ and similarly $B C=C B$ and $A C=C A$. We must show this:

$$
\begin{gather*}
\left(x^{2} y^{2} z+2 x^{2} y+x\right) A+\left(x y^{2} z^{2}+2 y^{2} z+y\right) B+\left(x^{2} y z^{2}+2 z^{2} x+z\right) C=3 x y z A B C \tag{1}\\
x A B=x^{2} A+B \Rightarrow x y z A B C=x^{2} y z A C+y z B C=x^{2} y\left(z^{2} C+A\right)+z\left(y^{2} B+C\right)= \\
=x^{2} y z^{2} C+x^{2} y A+y^{2} z B+z C \quad(2) \\
y B C=y^{2} B+C \Rightarrow x y z A B C=x y^{2} z A B+x z A C= \\
=y^{2} z\left(x^{2} A+B\right)+x\left(z^{2} C+A\right)=x^{2} y^{2} z A+y^{2} z B+x z^{2} C+x A \text { (3) } \\
z C A=z^{2} C+A \Rightarrow x y z=x y z^{2} B C+x y A B=x z^{2}\left(y^{2} B+C\right)+y\left(x^{2} A+B\right)= \\
=x y^{2} z^{2} B+x z^{2} C+x^{2} y A+y B \tag{4}
\end{gather*}
$$

From (2)+(3)+(4) $\Rightarrow 3 x y z A B C=\left(x^{2} y^{2} z+2 x^{2} y+x\right) A+\left(x y^{2} z^{2}+2 y^{2} z+y\right) B+$ $+\left(x^{2} y z^{2}+2 z^{2} x+z\right) C \Rightarrow(1)$ its true.

UP.033. If $\boldsymbol{a}, \boldsymbol{b}>0$ then:

$$
2(\sqrt{a}+\sqrt{b})^{2}+\sqrt[3]{a b}(\sqrt[3]{a}+\sqrt[3]{b}) \leq 3 \sqrt[3]{\frac{a+b}{2}}(\sqrt[3]{a}+\sqrt[3]{b})\left(\sqrt[3]{\frac{2 a+b}{3}}+\sqrt[3]{\frac{a+2 b}{3}}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution by proposer

By the AM-GM inequality $\Rightarrow\left\{\begin{array}{l}\sqrt[3]{1 \cdot \frac{2 a}{a+b} \cdot \frac{3 a}{a+b+c}} \leq \frac{1+\frac{2 a}{a+b}+\frac{3 a}{a+b+c}}{3} \\ \sqrt[3]{1 \cdot 1 \cdot \frac{3 b}{a+b+c}} \leq \frac{1+1+\frac{3 b}{a+b+c}}{3} \\ \sqrt[3]{1 \cdot \frac{2 b}{a+b} \cdot \frac{3 c}{a+b+c}} \leq \frac{1+\frac{2 b}{a+b}+\frac{3 c}{a+b+c}}{3}\end{array}\right.$
After addition holds $a+\sqrt[3]{a b \frac{a+b}{2}}+\sqrt[3]{a b c} \leq \sqrt[3]{a \cdot \frac{a+b}{2} \cdot \frac{a+b+c}{3}}$ but
$a+\sqrt{a b}+\sqrt[3]{a b c} \leq a+\sqrt[3]{a b \frac{a+b}{2}}+\sqrt[3]{a b c}$ therefore for $a, b, c>0$ holds:

$$
\begin{equation*}
\frac{a+\sqrt{a b}+\sqrt[3]{a b c}}{3} \leq \sqrt[3]{a \cdot \frac{a+b}{2} \cdot \frac{a+b+c}{3}} \tag{1}
\end{equation*}
$$

In (1) we take $c=a$ and $c=b$ then: $\frac{a+\sqrt{a b}+\sqrt[3]{a^{2} b}}{3} \leq \sqrt[3]{a \frac{a+b}{2} \cdot \frac{2 a+b}{3}}$ and $\frac{a+\sqrt{a b}+\sqrt[3]{a b^{2}}}{3} \leq \sqrt[3]{a \cdot \frac{a+b}{2} \cdot \frac{a+2 b}{3}}$ and after addition holds the desired inequality.

UP.034. Find the numbers $a, b, c \in \mathbb{N}^{*}$ knowing that:

$$
\frac{a+1}{b} \in \mathbb{N}, \frac{b+1}{c} \in \mathbb{N} \text { and } \frac{c+1}{a} \in \mathbb{N}
$$

Proposed by Gheorghe Alexe; George - Florin Șerban - Romania
Solution by SK Rejuan West Bengal - India
Case I: If three at a, b, c are equal ie $a=b=c \in \mathbb{N}^{*}$

$$
\frac{a+1}{b}=\frac{b+1}{c}=\frac{c+1}{a}=\frac{a+1}{a}, \text { which belongs to } \mathbb{N} \text { [given] }
$$

$$
\begin{gathered}
\text { Now, } \frac{a+1}{a} \in \mathbb{N} \text { if } a=1 \Rightarrow a=1=b=c \\
\therefore(1,1,1)=(a, b, c) \text { is a solution }
\end{gathered}
$$

Case II: If two of them are equal. Let $a=\boldsymbol{b}(\neq \boldsymbol{c})$ $\frac{a+1}{b}, \frac{b+1}{c}, \frac{c+1}{a} \in \mathbb{N}$ [given]. Now, $\frac{a+1}{b}=\frac{a+1}{a}$, it belongs to \mathbb{N} if $a=1 \Rightarrow a=1=b$

From $\frac{b+1}{c} \in \mathbb{N}$ we get, $\frac{1+1}{c} \in \mathbb{N}[\therefore b=1] \Rightarrow \frac{2}{c} \in \mathbb{N} \Rightarrow c=1$ or 2
but $c \neq(a=b) \Rightarrow c \neq 1 \Rightarrow c=2$ ie $(a, b, c)=(1,1,2)$ is a solution,

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

similarly, by taking $a=c(\neq b)$ we get $(a, b, c)=(1,2,1)$ is a solution and by taking $a \neq(b=c)$ we get $(a, b, c)=(2,1,1)$ is a solution

Case III: If three of them inequal, so in this case we get six possibilities ie $\boldsymbol{a}<b<c$ or $\boldsymbol{a}<c<b$ or $\boldsymbol{b}<c<a$ or $\boldsymbol{b}<a<c$ or $\boldsymbol{c}<a<b$ or $\boldsymbol{c}<b<a$

Subcase I: When $a<b<c \Rightarrow(a+1)<b+1<(c+1)(1)$
From (1) we get, $\frac{a+1}{b}<\frac{b+1}{b}=1+\frac{1}{b}\left[\because b \in \mathbb{N}^{*}\right]$

$$
\because \frac{a+1}{b} \in \mathbb{N} \text { and } \frac{a+1}{b}<1+\frac{1}{b} \Rightarrow \frac{a+1}{b}=1 \Rightarrow a+1=b
$$

$$
\left[\because b \in N^{*} \therefore b \geq 1 \Rightarrow \frac{1}{b} \leq 1 \Rightarrow 1+\frac{1}{b} \leq 2 \Rightarrow \frac{a+1}{b}<2 \text { and } \frac{a+1}{b} \in \mathbb{N}\right]
$$

Subcase II: If $\boldsymbol{a}<c<b \Rightarrow \boldsymbol{a}+\mathbf{1}<c+1<b+1$. It is given $\left.\frac{\boldsymbol{a}+\boldsymbol{1}}{\boldsymbol{b}} \in \mathbb{N} \Rightarrow \boldsymbol{b} \right\rvert\,(\boldsymbol{a}+\mathbf{1})$
Also by own assumption $a<b$ and by given condition $b \mid(a+1)$
$\Rightarrow \boldsymbol{a}$ and \boldsymbol{b} must be consecutive number in \mathbb{N}^{*} and $\boldsymbol{a}<b$
$\because \boldsymbol{a}, \boldsymbol{b}$ are consecutive numbers in \mathbb{N}^{*} and $\boldsymbol{a}<b$ so there exists no number \boldsymbol{c} betwen \boldsymbol{a} and \mathbf{b} which also belongs to \mathbb{N}^{*} ie for $\boldsymbol{a}<c<b$ and

$$
\frac{a+1}{b}, \frac{b+1}{c}, \frac{c+1}{b} \in \mathbb{N} \text { we get no solutions }
$$

\therefore No solutions for the case $a<c<b$ and $\frac{a+1}{b}, \frac{b+1}{c}, \frac{c+1}{a} \in \mathbb{N}$.
Subcase III: If $\boldsymbol{b}<c<\boldsymbol{a}$. In this case, by similar calculation at subcase I we get

$$
(a, b, c)=(3,1,2) ;(a, b, c)=(5,3,4)
$$

Subcase IV: If $\boldsymbol{b}<\boldsymbol{a}<\boldsymbol{c}$
In this case, by similar calculation at subcase II we get \exists no solution.
Subcase V: If $\boldsymbol{c}<a<b$, in this case by similar calculation at subcase I we get,

$$
(a, b, c)=(2,3,1) ;(a, b, c)=(4,5,3)
$$

Subcase VI:
If $\boldsymbol{c}<b<a$, in this case by similar calculation at subcase I we get, \exists no solutions.
Similarly from (1) we get, $\frac{b+1}{c}<\frac{c+1}{c}=1+\frac{1}{c}$
$\because \frac{b+1}{c} \in \mathbb{N}$ and $\frac{b+1}{c}<1+\frac{1}{c} \Rightarrow \frac{b+1}{c}=1 \Rightarrow b+1=c \Rightarrow a+1+1=c \Rightarrow c=a+2$
[by similar asignment]

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Now, $\frac{c+1}{a} \in \mathbb{N}$ [given $\Rightarrow \frac{a+2+1}{a} \in \mathbb{N} \Rightarrow \frac{a+3}{a} \in \mathbb{N} \Rightarrow 1+\frac{3}{a} \in \mathbb{N}$
which is possible if $a=1$ or 3

$$
\left.\begin{array}{l}
\text { if } a=1 \Rightarrow b=2 \Rightarrow c=3 \\
\text { if } a=3 \Rightarrow b=4 \Rightarrow c=5
\end{array}\right\} \begin{aligned}
& (a, b, c)=(1,2,3) \\
& (a, b, c)=(3,4,5)
\end{aligned} \text { is also solution }
$$

Therefore the solutions are:
$(a, b, c) \in\{(1,1,1),(1,1,2),(1,2,1),(2,1,1),(1,2,3),(3,4,5),(3,1,2),(5,3,4),(2,3,1),(4,5,3)\}$

UP.035. Find:

$$
\Omega=\lim _{n \rightarrow \infty}(\sqrt[3 n+3]{(2 n+1)!!}-\sqrt[3 n]{(2 n-1)!!}) \sqrt[3]{n^{2}}
$$

Proposed by D. M. Bătinețu - Giurgiu - Romania

Solution by Soumitra Mandal - Kolkata - India

Theorem: Let $(t, a) \in \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*}$. If $\left(a_{n}\right)_{n \geq 1} \in S\left(\mathbb{R}_{+}^{*}\right)$ is a $B-(t+1, a)$ sequence, then

$$
\begin{gathered}
\left(\sqrt[n]{a_{n}}\right)_{n \geq 1} \text { is a } L-\left(t, a(t+1), e^{-(t+1)}\right) \text { sequence. } \\
\Omega=\lim _{n \rightarrow \infty}(\sqrt[3 n+3]{(2 n+1)!!}-\sqrt[3 n]{(2 n-1)!!}) \sqrt[3]{n^{2}}= \\
=\left\{\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{a_{n+1}}-\sqrt[n]{a_{n}}\right)\right\}\left(\lim _{n \rightarrow \infty} \sqrt[3]{n^{2}}\right) \text { where } a_{n}=\sqrt[3]{(2 n-1)!!} \\
\text { for all } n \geq 1 \\
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{n \cdot a_{n}}=\left(\lim _{n \rightarrow \infty} \frac{1}{\sqrt[3]{n^{2}}}\right)\left(\lim _{n \rightarrow \infty} \sqrt[3]{\frac{(2 n+1)!!}{n \cdot(2 n-1)!!}}\right)= \\
=\left(\lim _{n \rightarrow \infty} \frac{1}{\sqrt[3]{n^{2}}}\right)\left(\lim _{n \rightarrow \infty} \sqrt[3]{\left.\frac{1}{n} \cdot \frac{(2 n+1)!}{2^{n} \cdot n!} \cdot \frac{2^{n-1} \cdot(n-1)!}{(2 n-1)!}\right)=}\right. \\
=\left(\lim _{n \rightarrow \infty} \frac{1}{\sqrt[3]{n^{2}}}\right)\left(\lim _{n \rightarrow \infty} \sqrt[3]{2-\frac{1}{n}}\right)=\sqrt[3]{2}\left(\lim _{n \rightarrow \infty} \frac{1}{\sqrt[3]{n^{2}}}\right)
\end{gathered}
$$

Hence, $\left(a_{n}\right)_{n \geq 1}$ is a $B-\left(1, \sqrt[3]{2}\left(\lim _{n \rightarrow \infty} \frac{1}{\sqrt[3]{n^{2}}}\right)\right)$ sequence so by the above theorem

$$
\left(\sqrt[n]{a_{n}}\right)_{n \geq 1} \text { is a } L-\left(0, \sqrt[3]{2}\left(\lim _{n \rightarrow \infty} \frac{1}{\sqrt[3]{n^{2}}}\right) \cdot 1 \cdot e^{-1}\right) \text { sequence }
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\Omega=\frac{\sqrt[3]{2}}{3}\left(\lim _{n \rightarrow \infty} \sqrt[3]{n^{2}}\right)\left(\lim _{n \rightarrow \infty} \frac{1}{\sqrt[3]{n^{2}}}\right)=\frac{\sqrt[3]{2}}{e} \text { (Ans:) }
$$

UP.036. Let $\left(a_{n}\right)_{n \geq 1}$ be a positive real sequence such that:

$$
\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=r \in R_{+}^{*}, u, v \in R, u+v=1 .
$$

We denote $a_{n}!=a_{1} a_{2} \ldots a_{n}, G_{n}=\left(a_{n}!\right)^{\frac{1}{n}}, \forall n \in N^{*}$. Compute:

$$
\lim _{n \rightarrow \infty}\left((n+1) \sqrt[u^{n+1}]{\left(G_{n+1}!\right)^{v}}-n \sqrt[u^{n}]{\left(G_{n}!\right)^{v}}\right)
$$

Proposed by D. M. Bătinețu - Giurgiu; Neculai Stanciu - Romania

Solution by Soumitra Mandal - Kolkata - India

Let $(t, a) \in \mathbb{R}_{+} \times \mathbb{R}_{+}^{*}$. If $<a_{n}>_{n \geq 1} \in S\left(\mathbb{R}_{+}^{*}\right)$ is a $B-(t+1, a)$ sequence then

$$
<\sqrt[n]{a_{n}}>_{n \geq 1} \text { is a } L-\left(t, a(t+1), e^{-(t+1)}\right) \text { sequence. }
$$

$$
\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=r \in \mathbb{R}_{+}^{*}, u, v \in \mathbb{R} \text { and } u+v=1
$$

$$
a_{n}!=a_{1} a_{2} \ldots a_{n} \text { and } G_{n}=\sqrt[n]{a_{n}!} \text { where } n \in \mathbb{N}^{*}
$$

$$
\Omega=\lim _{n \rightarrow \infty}\left((n+1)^{u} \sqrt[n+1]{\left(G_{n+1}\right)^{v}}-n^{u n} \sqrt{\left(G_{n}!\right)^{v}}\right)
$$

$$
=\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{(n+1)^{u(n+1)}\left(G_{n+1}\right)^{v}}-\sqrt[n]{n^{n u}\left(G_{n}!\right)^{v}}\right)
$$

Let $H_{n}=n^{n u}\left(G_{n}!\right)^{v}$ where $n \geq 1$ and $u+v=1$

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{H_{n+1}}{n \cdot H_{n}}=\left(\lim _{n \rightarrow \infty} \frac{1}{n^{1-u}}\right)\left(\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n u}\right)\left(\lim _{n \rightarrow \infty} \frac{G_{n+1}!}{G_{n}!}\right)^{v} \\
=e^{u}\left(\lim _{n \rightarrow \infty} \frac{G_{n+1}}{n}\right)^{v} \text { since, } G_{n+1}!=G_{n+1} G_{n}! \\
=e^{u}\left\{\left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)\left(\lim _{n \rightarrow \infty} \sqrt[n+1]{a_{n+1}!}\right)\right\}^{v}=e^{u}\left\{\left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)\left(\lim _{n \rightarrow \infty} \frac{a_{n+2}!}{a_{n+1}!}\right\}^{v}\right.
\end{gathered}
$$

[Cauchy D - Alembert's Theorem]

$$
=e^{u}\left(\lim _{n \rightarrow \infty} \frac{a_{n+2}}{n}\right)^{v}=e^{u}\left(\lim _{n \rightarrow \infty} \frac{a_{n+3}-a_{n+2}}{n+1-n}\right)^{v}=e^{u} r^{v}
$$

Hence, $<H_{n}>_{n \geq 1}$ is a $B-\left(1, e^{u} r^{v}\right)$ sequence. By the above theorem it yields that
$<\sqrt[n]{H_{n}}>_{n \geq 1}$ is a $L-\left(0, e^{u} r^{v} \cdot 1 \cdot e^{-1}\right)$ sequence i.e. $L-\left(0, e^{u-1} r^{v}\right)$ sequence.

$$
\Omega=e^{u-1} r^{v} \text { (Ans :) }
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

UP.037. Let $\left(a_{n}\right)_{n \geq 1},\left(b_{n}\right)_{n \geq 1}$ be positive real sequence such that

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=a \in \mathbb{R}_{+}^{*}, \\
\lim _{n \rightarrow \infty}\left(b_{n+1}-b_{n}\right)=b \in \mathbb{R}_{+}^{*}, u, v \in \mathbb{R}
\end{gathered}
$$

with $u+v=1$. Calculate

$$
\lim _{n \rightarrow \infty}\left(a_{n+1}^{u} \sqrt[n+1]{\left(b_{1} b_{2} \ldots b_{n} b_{n+1}\right)^{v}}-a_{n}^{u n} \sqrt{\left(b_{1} b_{2} \ldots b_{n}\right)^{v}}\right)
$$

Proposed by D.M. Bătinețu - Giurgiu; Neculai Stanciu - Romania
Solution by Soumitra Mandal - Kolkata - India
Theorem: Let $(t, a) \in \mathbb{R}_{+} \times \mathbb{R}_{+}^{*}$. If $<a_{n}>_{n \geq 1} \in S\left(\mathbb{R}_{+}^{*}\right)$ is a $B-(t+1, a)$ sequence then

$$
<\sqrt[n]{a_{n}}>_{n \geq 1} \text { is a } L-\left(t, a(t+1), e^{-(t+1)}\right) \text { sequence. }
$$

$\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=a \in \mathbb{R}_{+}^{*}$ and $\lim _{n \rightarrow \infty}\left(b_{n+1}-b_{n}\right)=b \in \mathbb{R}_{+}^{*}$ and $u+v=1$

$$
\Omega=\lim _{n \rightarrow \infty}\left(a_{n+1}^{u} \sqrt[n+1]{\left(\prod_{k=1}^{n+1} b_{k}\right)^{v}}-a_{n}^{u} \sqrt[n]{\left(\prod_{k=1}^{n} b_{k}\right)^{v}}\right)
$$

Let $H_{n}=a_{n}^{n u}\left(\prod_{k=1}^{n} b_{k}\right)^{v}$ for all $n \geq 1$ and $u+v=1$

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{H_{n+1}}{n^{u+1} \cdot H_{n}}=\left(\lim _{n \rightarrow \infty} \frac{1}{n^{2 u+v}}\right)\left(\lim _{n \rightarrow \infty} a_{n+1}^{u}\right)\left(\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right)^{n u}\right)\left(\lim _{n \rightarrow \infty} b_{n+1}^{v}\right) \\
=\left(\lim _{n \rightarrow \infty} \frac{1}{n^{2 u+v}}\right)\left(\lim _{n \rightarrow \infty}\left(a_{n+1} a_{n}\right)^{u}\right)\left(\lim _{n \rightarrow \infty} b_{n+1}^{v}\right)
\end{gathered}
$$

Applying Cauchy - D'Alembert's theorem

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\left(\lim _{n \rightarrow \infty} \frac{a_{n+1}}{n}\right)^{u}\left(\lim _{n \rightarrow \infty} \frac{a_{n}}{n}\right)^{u}\left(\lim _{n \rightarrow \infty} \frac{b_{n+1}}{n}\right)^{v} \\
=\left(\lim _{n \rightarrow \infty} \frac{a_{n+2}-a_{n+1}}{n+1-n}\right)^{u}\left(\lim _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{n+1-n}\right)^{u}\left(\lim _{n \rightarrow \infty} \frac{b_{n+2}-b_{n+1}}{n+1-n}\right)=a^{2 u} b^{v}
\end{gathered}
$$

Hence $<H_{n}>_{n \geq 1}$ is $B-\left(u+2, a^{2 u} b^{v}\right)$ sequence. Hence by the above theorem it

$$
\text { yields }<\sqrt[n]{H_{n}}>_{n \geq 1} \text { as a } L-\left(u+1, a^{2 u} b^{v}(u+2) e^{-(u+2)}\right) \text { sequence or }
$$

$$
\begin{gathered}
L-\left(u+1, a^{2 u} b^{v}(3 u+2 v) \cdot e^{-(3 u+2 v)}\right) \text { sequence } \because u+v=1 \\
\therefore \Omega=\frac{a^{2 u} b^{v}(3 u+2 v)}{e^{3 u+2 v}} \text { (Ans :) }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

UP.038. Let $\left(a_{n}\right)_{n \geq 1}$ be a positive real sequence such that

$$
\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=r \in \mathbb{R}_{+}^{*}
$$

We denote $a_{n}!=a_{1} a_{2} \ldots a_{n}, G_{n}=\left(a_{n}!\right)^{\frac{1}{n}}, \forall n \in \mathbb{N}^{*}$. Evaluate

$$
\lim _{n \rightarrow \infty}\left(\frac{(n+1)^{2}}{\sqrt[n+1]{G_{n+1}!}}-\frac{n^{2}}{\sqrt[n]{G_{n}!}}\right)
$$

Proposed by D. M. Bătinețu - Giurgiu; Neculai Stanciu - Romania Solution by Soumitra Mandal - Kolkata - India

Theorem: Let $(t, a) \in \mathbb{R}_{+} \times \mathbb{R}_{+}^{*}$. If $<a_{n}>_{n \geq 1} \in S\left(\mathbb{R}_{+}^{*}\right)$ is a $B-(t+1, a)$ sequence then

$$
\begin{gathered}
<\sqrt[n]{a_{n}}>_{n \geq 1} \text { is a } L-\left(t, a(t+1), e^{-(t+1)}\right) \text { sequence. } \\
\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=r \in \mathbb{R}_{+}^{*} \\
a_{n}!=a_{1} a_{2} \ldots a_{n} \text { and } G_{n}=\sqrt[n]{a_{n}!\text { for all } n \in \mathbb{N}^{*}} \\
\Omega=\lim _{n \rightarrow \infty}\left(\frac{(n+1)^{2}}{\sqrt[n+1]{G_{n+1}!}}-\frac{n^{2}}{\sqrt[n]{G_{n}}}\right)=\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{\frac{(n+1)^{2(n+1)}}{G_{n+1}!}}-\sqrt[n]{\frac{n^{2 n}}{G_{n}!}}\right)
\end{gathered}
$$

Let $\boldsymbol{H}_{\boldsymbol{n}}=\frac{n^{2 \boldsymbol{n}}}{G_{\boldsymbol{n}}!}$ for all $\boldsymbol{n} \geq \mathbf{1}$

$$
\therefore \lim _{n \rightarrow \infty} \frac{H_{n+1}}{n \cdot H_{n}}=\left(\lim _{n \rightarrow \infty} n\right)\left(\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{2(n+1)}\right)\left(\lim _{n \rightarrow \infty} \frac{G_{n}!}{G_{n+1}}\right)
$$

$$
=\left(\lim _{n \rightarrow \infty} n\right) e^{2}\left(\lim _{n \rightarrow \infty} \frac{1}{G_{n+1}}\right)=e^{2}\left(\lim _{n \rightarrow \infty} n\right)\left(\frac{1}{\lim _{n \rightarrow \infty} \sqrt[n+1]{a_{n+1}}}\right)=e^{2}\left(\lim _{n \rightarrow \infty} n\right)\left(\frac{1}{\lim _{n \rightarrow \infty} \frac{a_{n+2}!}{a_{n+1}!}}\right)
$$

Applying Cauchy D-Alembert's Theorem

$$
=e^{2}\left(\frac{1}{\lim _{n \rightarrow \infty} \frac{a_{n+2}}{n}}\right)=e^{2}\left(\frac{1}{\lim _{n \rightarrow \infty} \frac{a_{n+3}-a_{n+2}}{n+1-n}}\right)=\frac{e^{2}}{r}
$$

hence $<H_{n}>_{n \geq 1}$ is a $B-\left(1, \frac{e^{2}}{r}\right)$ sequence. According to the above theorem it yields
$<\sqrt[n]{H_{n}}>_{n \geq 1}$ is a $L-\left(0, \frac{e^{2}}{r} \cdot 1 \cdot e^{-1}\right)$ sequence i.e. $L-\left(0, \frac{e}{r}\right)$ sequence.

$$
\Omega=\frac{e}{r}(\text { Ans :) }
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

UP.039. Let $\left(a_{n}\right)_{n \geq 1},\left(b_{n}\right)_{n \geq 1}$ be positive real sequences with:

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=a \in R_{+}^{*}, \lim _{n \rightarrow \infty}\left(b_{n+1}-b_{n}\right)=b \in R_{+}^{*}, \\
P_{n}=\sqrt{\frac{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}{n}}, P_{n}!=P_{1} P_{2} \ldots P_{n},
\end{gathered}
$$

$\forall n \in N^{*}, u, v \in R, u+v=1$. Find

$$
\lim _{n \rightarrow \infty}\left(b_{n+1}^{u} \sqrt[n+1]{\left(P_{n+1}!\right)^{v}}-b_{n}^{u} \sqrt[n]{\left(P_{n}!\right)^{v}}\right)
$$

Proposed by D. M. Bătinețu - Giurgiu; Neculai Stanciu - Romania

Solution by Soumitra Mandal - Kolkata - India

Theorem: Let $(t, a) \in \mathbb{R}_{+} \times \mathbb{R}_{+}^{*}$. If $<a_{n}>_{n \geq 1} \in S\left(\mathbb{R}_{+}^{*}\right)$ is a

$$
\begin{gathered}
B-(t+1, a) \text { sequence then }<\sqrt[n]{a_{n}}>{ }_{a \geq 1} \text { is a } \\
L-\left(t, a(t+1), e^{-(t+1)}\right) \text { sequence. }
\end{gathered}
$$

$$
\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=a \in \mathbb{R}_{+}^{*} ; \lim _{n \rightarrow \infty}\left(b_{n+1}-b_{n}\right)=b \in \mathbb{R}_{+}^{*}
$$

$$
P_{n}=\sqrt{\frac{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}{n}}, P_{n}!=\prod_{k=1}^{n} P_{k}
$$

$$
\Omega=\lim _{n \rightarrow \infty}\left(b_{n+1}^{u} \sqrt[n+1]{\left(P_{n+1}!\right)^{v}}-b_{n}^{u n} \sqrt{\left(P_{n}!\right)^{v}}\right) \text { where } u+v=1
$$

$$
=\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{b_{n+1}^{u(n+1)}\left(P_{n+1}!\right)^{v}}-\sqrt[n]{b_{n}^{u n}\left(P_{n}!\right)^{v}}\right)=\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{c_{n+1}}-\sqrt[n]{c_{n}}\right)
$$

where $c_{n}=b_{n}^{u n}\left(P_{n}!\right)^{v}$ where $n \in \mathbb{N}^{*}$

$$
\begin{gathered}
\therefore \lim _{n \rightarrow \infty} \frac{c_{n+1}}{n^{u+1} \cdot c_{n}}=\lim _{n \rightarrow \infty} \frac{1}{n^{u+1}} \frac{b_{n+1}^{u(n+1)}\left(\boldsymbol{P}_{n+1}!\right)^{v}}{b_{n}^{u n}\left(P_{n}!\right)^{v}}= \\
=\left(\lim _{n \rightarrow \infty} \frac{b_{n+1}^{u}}{n^{2 u+v}}\right)\left(\lim _{n \rightarrow \infty}\left(\frac{b_{n+1}}{b_{n}}\right)^{n u}\right)\left(\lim _{n \rightarrow \infty}\left(P_{n+1}\right)^{v}\right)==\left(\lim _{n \rightarrow \infty} \frac{b_{n+1}^{u}}{n^{2 u+v}}\right)\left(\lim _{n \rightarrow \infty} b_{n}^{u}\right)\left(\lim _{n \rightarrow \infty}\left(P_{n+1}\right)^{v}\right)=
\end{gathered}
$$

Applying Cauchy - D Alembert's Theorem

$$
=\left(\lim _{n \rightarrow \infty}\left(\frac{b_{n+1}}{n}\right)^{u}\right)\left(\lim _{n \rightarrow \infty}\left(\frac{b_{n}}{n}\right)^{u}\right)\left(\lim _{n \rightarrow \infty}\left(\frac{P_{n+1}}{n}\right)^{v}\right)=
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
=\left(\lim _{n \rightarrow \infty}\left(\frac{b_{n+2}-b_{n+1}}{n+1-n}\right)^{u}\right)\left(\lim _{n \rightarrow \infty}\left(\frac{b_{n+1}-b_{n}}{n+1-n}\right)^{u}\right)\left(\lim _{n \rightarrow \infty} \frac{1}{n^{v}}\right)\left(\lim _{n \rightarrow \infty}\left(\frac{\sum_{k=1}^{n} a_{k}^{2}}{n}\right)^{\frac{v}{2}}\right)= \\
=b^{2 u}\left(\lim _{n \rightarrow \infty} \frac{1}{n^{v}}\right)\left(\lim _{n \rightarrow \infty}\left(\prod_{k=1}^{n} a_{k}\right)^{\frac{v}{n}}\right)
\end{gathered}
$$

since

$$
\lim _{n \rightarrow \infty} \sqrt{\frac{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{a_{1} a_{2} \ldots a_{n}}=b^{2 u}\left(\lim _{n \rightarrow \infty} \frac{1}{n^{v}}\right)\left(\lim _{n \rightarrow \infty} a_{n+1}^{v}\right)
$$

Applying Cauchy - \mathbf{D}^{\prime} Alembert's Theorem

$$
=b^{2 u}\left(\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{n}\right)^{v}\right)=b^{2 u}\left(\lim _{n \rightarrow \infty}\left(\frac{a_{n+2}-a_{n+1}}{n+1-n}\right)^{v}\right)=b^{2 u} a^{v}
$$

Hence, $\left\langle\boldsymbol{c}_{\boldsymbol{n}}>_{n \geq 1}\right.$ constitues a $B-\left(u+2, b^{2 u} a^{v}\right)$ sequence by the above theorem $<\sqrt[n]{c_{n}}>_{n \geq 1}$ constitues $L-\left(u+1, b^{2 u} a^{v}(u+2) e^{-(u+2)}\right)$ sequence or

$$
\begin{gathered}
L-\left(u+1, b^{2 u} a^{v}(3 u+2 v) e^{-(3 u+2 v)}\right) \text { sequence. } \\
\Omega=\frac{b^{2 u} a^{v}(3 u+2 v)}{e^{3 u+2 v}} \text { (Ans:) }
\end{gathered}
$$

UP.040. Let $\left(a_{n}\right)_{n \geq 1}$ be a positive real sequence such that

$$
\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=r \in R_{+}^{*} .
$$

For any $\boldsymbol{x} \in \boldsymbol{R}_{+}^{*}$ we denote $\boldsymbol{M}_{n}^{[x]}=\left(\frac{a_{1}^{x}+a_{2}^{x}+\cdots+a_{n}^{x}}{n}\right)^{\frac{1}{x}}$ and $M_{n}^{[x]}!=M_{1}^{[x]} M_{2}^{[x]} \ldots M_{n}^{[x]}, \forall n \in N^{*}$.
Find:

$$
\lim _{n \rightarrow \infty}\left(\frac{(n+1)^{2}}{\sqrt[n+1]{M_{n+1}^{[x]}}!}-\frac{n^{2}}{\sqrt[n]{M_{n}^{[x]}}!}\right)
$$

Proposed by D. M. Bătinețu - Giurgiu; Neculai Stanciu - Romania
Solution by Soumitra Mandal - Kolkata - India
Theorem: Let $(t, a) \in \mathbb{R}_{+} \times \mathbb{R}_{+}^{*}$. If $<a_{n}>_{n \geq 1} \in S\left(\mathbb{R}_{+}^{*}\right)$ is a

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$B-(t+1, a)$ sequence then $\left\langle\sqrt[n]{a_{n}}>_{n \geq 1}\right.$ is a $L-\left(t, a(t+1), e^{-(t+1)}\right)$ sequence.

$$
\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=r \in \mathbb{R}_{+}^{*}
$$

for any $x \in \mathbb{R}_{+}^{*}$ we denote $M_{n}^{[x]}=\sqrt[x]{\frac{a_{1}^{x}+a_{2}^{x}+\cdots+a_{n}^{x}}{n}}$ and

$$
\begin{gathered}
M_{n}^{[x]}!=M_{1}^{[x]} M_{2}^{[x]} \cdots M_{n}^{[x]} \text { for all } n \in \mathbb{N}^{*} \\
\Omega=\lim _{n \rightarrow \infty}\left(\frac{(n+1)^{2}}{\sqrt[n+1]{M_{n+1}^{[x]}}}-\frac{n^{2}}{\sqrt[n]{M_{n}^{[x]}}}\right)=\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{\frac{(n+1)^{2(n+1)}}{M_{n+1}^{[x]}!}}-\sqrt[n]{\frac{n^{2 n}}{M_{n}^{[x]}}}\right)= \\
= \\
\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{c_{n+1}}-\sqrt[n]{c_{n}}\right) \text { where } c_{n}=\frac{n^{2 n}}{M_{n}^{[x]}!} \text { for all } n \geq 1 \\
\lim _{n \rightarrow \infty} \frac{c_{n+1}}{n \cdot c_{n}}=\left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)\left(\lim _{n \rightarrow \infty} \frac{(n+1)^{2(n+1)}}{M_{n+1}^{[x]}!} \cdot \frac{M_{n}^{[x]}!}{n^{2 n}}\right)= \\
=\left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)\left(\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{2 n}\right)\left(\lim _{n \rightarrow \infty}(n+1)^{2}\right)\left(\lim _{n \rightarrow \infty} \frac{1}{M_{n+1}^{[x]}}\right)= \\
=e^{2}\left(\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{2}\right)\left(\lim _{n \rightarrow \infty} n\right)\left(\lim _{n \rightarrow \infty} \frac{1}{\sqrt[x]{\sum_{k=1}^{n+1} a_{k}^{x}}}\right)=e^{2}\left(\lim _{n \rightarrow \infty} n\right)\left(\lim _{n \rightarrow \infty} \frac{1}{n+1}\right) \\
\operatorname{since} \\
\lim _{n \rightarrow \infty} \sqrt[x]{\frac{\sum_{k=1}^{n+1} a_{k}}{n} a_{k}^{x}}=\lim _{n \rightarrow \infty}^{n} \sqrt[n]{\prod_{k=1}^{n} a_{k}=e^{2}\left(\lim _{n \rightarrow \infty} n\right)\left(\lim _{n \rightarrow \infty} \frac{1}{\lim _{n \rightarrow \infty} a_{n+1}}\right)}
\end{gathered}
$$

Applying Cauchy - D Alembet's Theorem

$$
=e^{2}\left(\frac{1}{\lim _{n \rightarrow \infty} \frac{a_{n+1}}{n}}\right)=\frac{e^{2}}{\lim _{n \rightarrow \infty} \frac{a_{n+2}-a_{n}}{n+1-n}}=\frac{e^{2}}{r}
$$

hence, $<c_{n}>_{n \geq 1}$ is a $B-\left(0, \frac{e^{2}}{r}\right)$ sequence and by the above theorem

$$
\begin{gathered}
<\sqrt[n]{c_{n}}>_{n \geq 1} \text { constitutes a } L-\left(1, \frac{e^{2}}{r} \cdot e^{-1}\right) \text { sequence or, } \\
L-\left(1, \frac{e}{r}\right) \text { sequence. } \Omega=\frac{e}{r} \text { (Ans:) }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

UP.041. Prove that:

$$
\frac{3^{\frac{3}{2}}}{2} \cdot \sum_{0}^{\infty} \frac{(n!)^{2}}{(2 n+1)!}=\pi
$$

Proposed by Francis Fregeau - Quebec - Canada
Solution by proposer

$$
\text { Let } f(2 n+1)=\int_{0}^{\infty} u^{2 n+1} e^{-u^{2}} d u
$$

We now consider another similar integral as a function of v such that:

$$
[f(2 n+1)]^{2}=\int_{0}^{\infty} u^{2 n+1} e^{-u^{2}} d u \cdot \int_{0}^{\infty} v^{2 n+1} e^{-v^{2}} d v=\int_{0}^{\infty} \int_{0}^{\infty}(u v)^{2 n+1} e^{-\left(u^{2}+v^{2}\right)} d u d v
$$

We now apply the change of variables: $u=r \cdot \cos \theta ; v=r \cdot \sin \theta$
And our domain of integration is: $u \geq 0 ; v \geq 0 \Rightarrow \mathbf{0} \leq \boldsymbol{\theta} \leq \frac{\pi}{2} ; r \geq 0$

$$
\begin{gathered}
\Rightarrow[f(2 n+1)]^{2}=\int_{0}^{\infty} \int_{0}^{\frac{\pi}{2}}[\sin (\theta) \cdot \cos (\theta)]^{2 n+1} r^{4 n+3} e^{-r^{2}} d \theta d r \\
=\int_{0}^{\frac{\pi}{2}}[\sin (\theta) \cdot \cos (\theta)]^{2 n+1} d \theta \cdot f(2[2 n+1]+1)
\end{gathered}
$$

We now turn our attention back to $f(2 n+1)$ and apply the substitution:

$$
\begin{gathered}
u^{2}=x \Rightarrow d u=\frac{1}{2} \cdot x^{-\frac{1}{2}} d x \\
\therefore \int_{0}^{\infty} u^{2 n+1} e^{-u^{2}} d u=\frac{1}{2} \int_{0}^{\infty} x^{n} e^{-x} d x=\frac{\Gamma(n+1)}{2}=\frac{n!}{2} \\
\Rightarrow \int_{0}^{\frac{\pi}{2}}[\sin (\theta) \cdot \cos (\theta)]^{2 n+1} d \theta=\frac{[f(2 n+1)]^{2}}{f(2[2 n+1]+1)}=\frac{1}{2} \cdot \frac{(n!)^{2}}{(2 n+1)!}
\end{gathered}
$$

Next:

$$
\sum_{0}^{\infty}[\sin (\theta) \cdot \cos (\theta)]^{2 n+1}=\frac{\sin (\theta) \cdot \cos (\theta)}{1-[\sin (\theta) \cdot \cos (\theta)]^{2}}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

We consider: $\int \frac{\sin (\theta) \cdot \cos (\theta)}{1-[\sin (\theta) \cdot \cos (\theta)]^{2}} \boldsymbol{d} \theta=-2 \int \frac{\sin (2 \theta)}{\sin ^{2}(2 \theta)-4} d \theta$

$$
\begin{gathered}
=-\int \frac{\sin (x)}{\sin ^{2}(x)-4} d x=\int \frac{\sin (x)}{\cos ^{2}(x)+3} d x \\
\cos (x)=y \Rightarrow d x=-\frac{d y}{\sin (x)} \\
\Rightarrow \int \frac{\sin (x)}{\cos ^{2}(x)+3} d x=\int \frac{1}{3+y^{2}} d y=\frac{1}{\sqrt{3}} \arctan \left(\frac{y}{\sqrt{3}}\right)
\end{gathered}
$$

Un-doing the substitutions yields:

$$
\begin{gathered}
\int \frac{\sin (\theta) \cdot \cos (\theta)}{1-[\sin (\theta) \cdot \cos (\theta)]^{2}} d \theta=\frac{\arctan \left(\frac{\cos (2 \theta)}{\sqrt{3}}\right)}{\sqrt{3}} \\
\therefore \int_{0}^{\frac{\pi}{2}} \frac{\sin (\theta) \cdot \cos (\theta)}{1-[\sin (\theta) \cdot \cos (\theta)]^{2}} d \theta=\frac{\pi}{3^{\frac{3}{2}}}
\end{gathered}
$$

$$
\begin{gathered}
\sum_{0}^{\infty} \frac{1}{2} \cdot \frac{(n!)^{2}}{(2 n+1)!}=\int_{0}^{\frac{\pi}{2}} \sum_{0}^{\infty}[\sin (\theta) \cdot \cos (\theta)]^{2 n+1}=\int_{0}^{\frac{\pi}{2}} \frac{\sin (\theta) \cdot \cos (\theta)}{1-[\sin (\theta) \cdot \cos (\theta)]^{2}} d \theta=\frac{\pi}{3^{\frac{3}{2}}} \\
\therefore \frac{3^{\frac{3}{2}}}{2} \cdot \sum_{0}^{\infty} \frac{(n!)^{2}}{(2 n+1)!}=\pi
\end{gathered}
$$

UP.042. Let $A B C D$ be a trapeze where $A B \| C D ; A B=a ; C D=b ; A D=c$;
$B C=\boldsymbol{d} ; \boldsymbol{a}>b$. Prove that

$$
\text { Area }[A B C D]<\frac{(a+b)(a-b+c+d)^{2}}{16(a-b)}
$$

Proposed by Daniel Sitaru - Romania

Solution by SK Rejuan - West Bengal - India

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Let $A B C D$ be the trapeze and h be the hight of it. Area $[A B C D]=\frac{1}{2} h(a+b)$
Now, from picture, $\boldsymbol{h}<c$ and $\boldsymbol{h}<b$

$$
\begin{gathered}
\Rightarrow 2 h<c+d=\frac{(a-b)(c+d)}{(a-b)}[\text { as } a-b>0] \Rightarrow 2 h<\frac{(a-b)(c+d)}{(a-b)}=\frac{4(a-b)(c+d)}{4(a-b)} \\
\Rightarrow 2 h<\frac{4(a-b)(c+d)}{(a-b)}<\frac{\{(a-b)+(c+d)\}^{2}}{4(a-b)}[b y \text { GM }<\mathrm{AM}] \Rightarrow 2 h<\frac{(a-b+c+d)^{2}}{4(a-b)} \\
\Rightarrow \frac{1}{4}(a+b) \cdot 2 h<\frac{1}{4}(a+b) \frac{(a-b+c+d)^{2}}{4(a-b)} \\
{[\because a+b>0]} \\
\Rightarrow \frac{1}{2} h(a+b)<\frac{(a+b)(a-b+c+d)^{2}}{16(a-b)} \Rightarrow \text { Area }[A B C D]<\frac{(a+b)(a-b+c+d)^{2}}{16(a-b)} \\
{[p r o v e d]}
\end{gathered}
$$

UP.043. Prove that in any $\triangle A B C$ we have:

$$
2 s+\sqrt{\sum\left(a^{2}+2 a b \cos (A-B)\right)} \geq \sum \sqrt{a^{2}+2 a b \cos (A-B)+b^{2}}
$$

Proposed by Daniel Sitaru - Romania

Solution by Nguyen Phuc Tang - Hanoi - Vietnam

We have: $L H S-R H S=\sqrt{\sum\left(a^{2}+2 a b \cos (A-B)\right)}-(a+b+c)+2(a+b+c)-$

$$
-\sum \sqrt{a^{2}+2 a b \cos (A-B)+b^{2}}=
$$

$$
=\sum \frac{2 a b[1-\cos (A-B)]}{\sqrt{a^{2}+2 a b \cos (A-B)+b^{2}}+a+b}-\frac{\sum 2 a[-\cos (A-B)+1]}{\sqrt{\sum\left(a^{2}+2 a b \cos (A-B)\right)}+(a+b+c)}
$$

We prove that:

$$
\begin{align*}
& \sqrt{\sum\left(a^{2}+2 a b \cos (A-B)\right)}+a+b+c \geq \sqrt{\left(a^{2}+2 a b \cos (A-B)+b^{2}\right.}+a+b \\
& \left.\quad \Leftrightarrow \sqrt{\sum\left(a^{2}+2 a b \cos (A-B)\right)} \geq \sqrt{\left(a^{2}+2 a b \cos (A-B)+b^{2}\right.}-c \quad{ }^{*}\right) \tag{*}
\end{align*}
$$

\oplus case $c \geq \sqrt{\left(a^{2}+2 a b \cos (A-B)\right)+b^{2}}$ then (*) is true \oplus case $c<\sqrt{\left(a^{2}+2 a b \cos (A-B)+b^{2}\right.}$
$\left(^{*}\right) \Leftrightarrow 2 b c \cos (B-C)+2 a c \cos (A-C) \geq-2 c \sqrt{\left(a^{2}+2 a b \cos (A-B)+b^{2}\right)}$ $-[b \cos (B-C)+a \cos (A-C)] \leq \sqrt{\left(a^{2}+2 a b \cos (A-B)\right)+b^{2}}\left({ }^{* *}\right)$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

if $\boldsymbol{b} \cos (B-C)+\boldsymbol{a} \cos (A-C) \geq 0 \Rightarrow\left({ }^{* *}\right)$ is true

$$
\text { if } b \cos (B-C)+a \cos (A-C)<0 \Rightarrow \sin B \cos (B-C)+\sin A \cos (A-C)<0
$$

$$
\Rightarrow \cos C \sin (A+B)+2 \sin A \sin B \sin C<0 \Rightarrow \cos C<0 \Rightarrow C>A \& C>B
$$

$$
(* *) \Leftrightarrow b^{2}\left(1-\cos ^{2}(B-C)\right)+c^{2}\left(1-\cos ^{2}(A-C)\right)+2 a b[2 \cos (A-B)-
$$

$2 \cos \boldsymbol{A}-C \cos B-C \geq 0(* * *)$

(**) is true, because

$$
2 \cos (A-B)-2 \cos (A-C) \cos (B-C)=\cos (A-B)-\cos (A+B-2 C)=
$$

$$
=2 \sin (C-A) \sin (C-B)>0 . \text { Equality holds if } a=b=c
$$

UP.044. For all $\boldsymbol{n} \in \mathbb{N}^{*}$ holds:

$$
\begin{gathered}
{[\sqrt{n}+\sqrt{n+1}]+[\sqrt{n}+\sqrt{n+2}]+[\sqrt{n}+\sqrt{n+3}]=} \\
=[\sqrt{4 n+1}]+[\sqrt{4 n+3}]+[\sqrt{4 n+5}]
\end{gathered}
$$

where [$\cdot]$ denote the integer part.

Proposed by Mihály Bencze - Romania

Solution by proposer

We prove that: $\sqrt{4 n+1} \leq \sqrt{n}+\sqrt{n+1}<\sqrt{4 n+2}$

$$
\begin{aligned}
& \sqrt{4 n+3} \leq \sqrt{n}+\sqrt{n+2}<\sqrt{4 n+4} \\
& \sqrt{4 n+5} \leq \sqrt{n}+\sqrt{n+3}<\sqrt{4 n+6}
\end{aligned}
$$

1) If $\sqrt{4 n+2}, \sqrt{4 n+4}, \sqrt{4 n+6} \notin \mathbb{N}$ then: $[\sqrt{4 n+1}]=[\sqrt{4 n+2}]$;

$$
[\sqrt{4 n+3}]=[\sqrt{4 n+4}] ;[\sqrt{4 n+5}]=[\sqrt{4 n+6}]
$$

2) If $\sqrt{4 n+2}, \sqrt{4 n+4}, \sqrt{4 n+6} \in \mathbb{N} \Rightarrow[\sqrt{4 n+2}]=[\sqrt{4 n+1}]+1$;

$$
[\sqrt{4 n+4}]=[\sqrt{4 n+3}]+1 ;[\sqrt{4 n+6}]=[\sqrt{4 n+5}]+1 \text { therefore }
$$

$$
[\sqrt{n}+\sqrt{n+1}]=[\sqrt{4 n+1}] ;[\sqrt{n}+\sqrt{n+2}]=[\sqrt{4 n+3}] ;[\sqrt{n}+\sqrt{n+3}]=[\sqrt{4 n+5}]
$$

After addion holds.

UP.045. Calculate:

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \ldots \int_{0}^{\frac{\pi}{2}} \frac{1}{1+\sqrt[2]{\tan \left(x_{1}\right)} \sqrt[3]{\tan \left(x_{2}\right)} \ldots \sqrt[n+1]{\tan \left(x_{n}\right)}} d x_{1} d x_{2} \ldots d x_{n}
$$

Proposed by Cornel Ioan Vălean - Romania
Solution by Hamza Mahmood - Lahore - Pakistan

$$
\begin{aligned}
I & =\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \ldots \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \frac{\text { Let }}{1+\sqrt[2]{\tan \left(x_{1}\right)} \cdot \sqrt[3]{\tan \left(x_{2}\right)} \cdot \ldots \cdot \sqrt[n]{\tan \left(x_{n-1}\right)} \cdot \sqrt[n+1]{\tan \left(x_{n}\right)}} d x_{1} d x_{2} \ldots d x_{n-1} d x_{n} \\
& \Rightarrow I=\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \ldots \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \frac{\prod_{k=2}^{n+1} \sqrt[k]{\cos \left(x_{k-1}\right)}}{\prod_{k=1}^{n+1} \sqrt[k]{\cos \left(x_{k-1}\right)}+\prod_{k=2}^{n+1} \sqrt[k]{\sin \left(x_{k-1}\right)}} d x_{1} d x_{2} \ldots d x_{n-1} d x_{n} \ldots(A) \\
& =I=\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \ldots \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \frac{\prod_{k=2}^{n+1} \sqrt[k]{\sin \left(x_{k-1}\right)}}{\prod_{k=1}^{n+1} \sqrt[k]{\sin \left(x_{k-1}\right)}+\prod_{k=2}^{n+1} \sqrt[k]{\sin \left(x_{k-1}\right)}} d x_{1} d x_{2} \ldots d x_{n-1} d x_{n} \ldots(B) \\
& \Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \ldots \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \frac{\prod_{k=2}^{n+1} \sqrt[k]{\cos \left(x_{k-1}\right)}+\prod_{k=2}^{n+1} \sqrt[k]{\sin \left(x_{k-1}\right)}}{\prod_{k=1}^{n+1} \sqrt[k]{\cos \left(x_{k-1}\right)}+\prod_{k=2}^{n+1} \sqrt[k]{\sin \left(x_{k-1}\right)}} d x_{1} d x_{2} \ldots d x_{n-1} d x_{n}= \\
& =\int_{0}^{\frac{\pi}{2}} \frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \ldots \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}}(1) d x_{1} d x_{2} \ldots d x_{n} \Rightarrow 2 I=\left(\frac{\pi}{2}\right)^{n} \Rightarrow I=\frac{\pi^{n}}{2^{n+1}}
\end{aligned}
$$

