Number 7

WINTER 2017
$?$

ROMANIAN MATHEMATICAL MAGAZINE

SOLUTIONS

Founding Editor DANIEL SITARU

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

SOLUTIONS

RM M WINTER EDITION 2017

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro Proposed by

Daniel Sitaru - Romania
Nguyen Viet Hung - Hanoi - Vietnam
Nguyen Ngoc Tu-Ha Giang-Vietnam
George Apostolopoulos - Messolonghi - Greece
M ihály Bencze - Romania, Neculai Stanciu-Romania

D.M. Bătinețu-Giurgiu-Romania
M artin Lukarevski-Skopje-M acedonia Mehmet Șahin - Ankara - Turkey
Iuliana Trașcă - Romania
Vasile Jiglău - Romania

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solutions by

Daniel Sitaru - Romania, Vadim M itrofanov-Kiev-Ukraine Soumitra M andal-Chandar Nagore-India, Nguyen Ngoc Tu-Ha

Giang-Vietnam, Soumava Chakraborty-Kolkata-India Sanong Huayrerai-Nakon Pathom-Thailand, Ravi Prakash-New
Delhi-India, M yagmarsuren Yadamsuren-Darkhan-M ongolia Nguyen Viet Hung - Hanoi - Vietnam, Do Huu Duc Thinh-Ho Chi

M inh-Vietnam, Rozeta Atanasova-Skopje-M acedonia Hoang Le Nhat Tung-Hanoi-Vietnam, Mihály Bencze - Romania George Apostolopoulos-M essolonghi-Greece, Abdallah El Farisi-Bechar-Algerie, Shivam Sharma-New Delhi-India Rovsen Pirguliyev-Sumgait-Azerbaidian

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

JP.091. Prove that the following inequalities hold for all positive real numbers:
a. $\frac{a^{3}}{a b+c^{2}}+\frac{b^{3}}{b c+a^{2}}+\frac{c^{3}}{c a+b^{2}} \geq \frac{3}{2} \cdot \frac{a^{2}+b^{2}+c^{2}}{a+b+c}$
b. $\frac{1}{a(b+c)}+\frac{1}{b(c+a)}+\frac{1}{c(a+b)} \geq \frac{3}{2} \cdot \frac{a+b+c}{a^{3}+b^{3}+c^{3}}$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

Solution 1 by Vadim Mitrofanov-Kiev-Ukraine

$$
\begin{aligned}
\text { We have } C & -S \sum_{c y c} \frac{1}{a(b+c)}=\frac{(a+b+c)^{2}}{\sum_{c y c} a^{3}(b+c)} \geq \frac{3}{2} \cdot \frac{(a+b+c)}{a^{3}+b^{3}+c^{3}} \Leftrightarrow \\
\Leftrightarrow & \Leftrightarrow 2\left(a^{4}+b^{4}+c^{4}\right) \geq \sum_{c y c} a^{3}(b+c)
\end{aligned}
$$

$$
\text { We have } C-S \sum_{c y c} \frac{a^{3}}{a b+c^{2}} \geq \frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}}{\sum c y c} a\left(b^{2}+c^{2}\right) \quad \geq \frac{3}{2} \cdot \frac{\left(a^{2}+b^{2}+c^{2}\right)}{a+b+c} \Leftrightarrow
$$

$$
\Leftrightarrow 2\left(a^{3}+b^{3}+c^{3}\right) \geq \sum_{c y c} a\left(b^{2}+c^{2}\right)
$$

Solution 2 by Soumitra Mandal-Chandar Nagore-India

$$
\text { Let } a+b+c=p, a b+b c+c a=q \text { and } r=a b c \text {. We have }
$$

$$
2 p^{3}-7 p q+9 r \geq 0 ; \sum_{c y c} \frac{a^{3}}{a b+c^{2}}=\sum_{c y c} \frac{a^{4}}{a^{2} b+a c^{2}}=\frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}}{\sum_{c y c} a b(a+b)}
$$

We need to prove, $\frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}}{\sum c y c a(a+b)} \geq \frac{3}{2} \cdot \frac{a^{2}+b^{2}+c^{2}}{a+b+c}$

$$
\begin{aligned}
& \Leftrightarrow 2\left(\sum_{c y c} a^{2}\right)\left(\sum_{c y c} a\right) \geq 3 \sum_{c y c} a b(a+b) \Leftrightarrow 2\left(p^{2}-2 q\right) p \geq 3(p q-3 r) \\
& \Leftrightarrow 2 p^{3}-7 p q+9 r \geq 0, \text { which is true } \sum_{c y c} \frac{a^{3}}{a b+c^{2}} \geq \frac{3}{2} \cdot \frac{a^{2}+b^{2}+c^{2}}{a+b+c} \text { (proved) }
\end{aligned}
$$

b. $\sum_{c y c} \frac{\left(a^{3}+b^{3}+c^{3}\right)}{a(b+c)}=\sum_{c y c} \frac{a^{2}}{b+c}+\sum_{c y c} \frac{b^{2}-b c+c^{2}}{a}$

$$
\stackrel{\text { Bergstorm }}{\stackrel{a}{\geq}} \frac{a+b+c}{2}+\frac{1}{4} \sum_{c y c} \frac{(b+c)^{2}}{a}\left[\begin{array}{c}
\because a^{2}-a b+b^{2} \geq \frac{(a+b)^{2}}{4}, \\
b^{2}-b c+c^{2} \geq \frac{(c+a)^{2}}{4} a n d \\
c^{2}-c a+a^{2} \geq \frac{(c+a)^{2}}{4}
\end{array}\right]
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Bergstorm

$$
\stackrel{a+b+c}{2}+a+b+c=\frac{3}{2} \cdot(a+b+c) \therefore \sum_{c y c} \frac{1}{a(b+c)} \geq \frac{3}{2} \cdot \frac{a+b+c}{a^{3}+b^{3}+c^{3}} \quad \text { (proved) }
$$

Solution 3 by Nguyen Ngoc Tu-Ha Giang-Vietnam

Using Hölder's inequality, we have: $a^{3}+b^{3}+c^{3} \geq \frac{1}{9}(a+b+c)^{3}$
$\Rightarrow \frac{3}{2} \cdot \frac{a+b+c}{a^{3}+b^{3}+c^{3}} \leq \frac{27}{2} \cdot \frac{1}{(a+b+c)^{2}}$. We will prove $\sum \frac{1}{a(b+c)} \geq \frac{27}{2(a+b+c)^{2}}$ is enough.
We have $\sum \frac{1}{a(b+c)} \geq \frac{9}{2(a b+b c+c a)} \geq \frac{9}{2 \cdot \frac{(a+b+c)^{2}}{3}}=\frac{27}{2(a+b+c)^{2}}$.
Solution 4 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \forall a, b, c \in \mathbb{R}^{+}, \frac{1}{a(b+c)}+\frac{1}{b(c+a)}+\frac{1}{c(a+b)} \geq \frac{3}{2} \cdot \frac{a+b+c}{a^{3}+b^{3}+\boldsymbol{c}^{3}} \\
& L H S=\frac{\sum\{b c(a+b)(c+a)\}}{a b c(a+b)(b+c)(c+a)}=\frac{\sum b c\left(\sum a b+a^{2}\right)}{a b c(a+b)(b+c)(c+a)} \stackrel{(1)}{=} \\
& =\frac{\left(\sum a b\right)^{2}+a b c\left(\sum a\right)}{a b c(a+b)(b+c)(c+a)} . \text { Let } a+b=x, b+c=y, c+a=z, \therefore x+y>z,
\end{aligned}
$$

$y+z>x, z+x>y \Rightarrow x, y, z$ are 3 sides of a triangle with semiperimeter,
circumradius, inradius $=s, R, r$ respectively. Now, $\sum a=\frac{\sum x}{2}=s, \therefore a=s-y$,

$$
\begin{gathered}
b=s-z, c=s-x ; \sum a b=\sum(s-y)(s-z)=\sum\left\{s^{2}-s(y+z)+y z\right\} \\
=3 s^{2}-s(4 s)+s^{2}+4 R r+r^{2} \stackrel{(2)}{=} 4 R r+r^{2} \\
\sum a^{3}=3 a b c+\left(\sum a\right)\left(\sum a^{2}-\sum a b\right)= \\
=\frac{3 s(s-x)(s-y)(s-z)}{s}+s\left\{\left(\sum a\right)^{2}-3 \sum a b\right\}= \\
=\frac{3 r^{2} s^{2}}{s}+s\left\{s^{2}-3\left(4 R+r^{2}\right)\right\}=3 r^{2} s+s\left(s^{2}-12 R r-3 r^{2}\right) \stackrel{(3)}{=} s\left(s^{2}-12 R r\right) ;(1),(2), \\
\text { (3) } \Rightarrow \text { given inequality } \Leftrightarrow \frac{r^{2}(4 R+r)^{2}+r^{2} s^{2}}{r^{2} s \cdot 4 R r s} \geq \frac{3}{2} \cdot \frac{s}{s\left(s^{2}-12 R r\right)} \Leftrightarrow \\
\Leftrightarrow s^{4}+s^{2}\left(16 R^{2}-10 R r+r^{2}\right) \geq 192 R^{3} r+96 R^{2} r^{2}+12 R r^{3} \\
\text { LHS of (4) } \stackrel{\text { Gerretsen }}{\geq} s^{2}\left(16 R r-5 r^{2}\right)+s^{2}\left(16 R^{2}-10 R r+r^{2}\right) \\
=s^{2}\left(16 R^{2}+6 R r-4 r^{2}\right) \stackrel{G e r r e t s e n}{\geq}\left(16 R r-5 r^{2}\right)\left(16 R^{2}+6 R r-4 r^{2}\right)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$\geq 192 R^{3} r+96 R^{2} r^{2}+12 R r^{3} \Leftrightarrow(t-2)\left(32 t^{2}+24 t-5\right) \stackrel{?}{\geq} 0$
$\left(t=\frac{R}{r}\right) \rightarrow$ true (Euler) (proved)

$$
\forall a, b, c \in \mathbb{R}^{+}, \frac{a^{3}}{a b+c^{2}}+\frac{b^{3}}{b c+a^{2}}+\frac{c^{3}}{c a+b^{2}} \geq \frac{3}{2} \cdot \frac{\sum a^{2}}{\sum a}
$$

$$
\text { LHS }=\frac{a^{4}}{a^{2} b+\boldsymbol{c}^{2} \boldsymbol{a}}+\frac{b^{4}}{b^{2} \boldsymbol{c}+\boldsymbol{a}^{2} \boldsymbol{b}}+\frac{\boldsymbol{c}^{4}}{c^{2} a+b^{2} \boldsymbol{c}} \stackrel{\text { Bergstrom }}{\gtrless} \frac{\left(\sum a^{2}\right)^{2}}{2 \sum a^{2} b} \geq \frac{3 \sum a^{2}}{2 \sum a}
$$

$$
\Leftrightarrow\left(\sum a^{2}\right)\left(\sum a\right) \stackrel{?}{\geq} 3 \sum a^{2} b \Leftrightarrow \sum a^{3}+\sum a^{2} b+\sum a b^{2} \geq 3 \sum a^{2} b
$$

$$
\Leftrightarrow \sum a^{3}+\sum a b^{2} \xrightarrow[\geq]{\geq} 2 \sum a^{2} b \text { (1). Now, } a^{3}+a b^{2} \stackrel{A-G}{\geq} 2 a^{2} b, b^{3}+b c^{2} \stackrel{A-G}{\geq} 2 b^{2} c
$$

and, $c^{3}+c a^{2} \stackrel{A-G}{\geq} 2 c^{2} a$. Adding the last 3 inequalities, we find (1) is true (proved).

JP.092. Prove that the following inequalities holds for all positive real numbers a, b, c
a. $\frac{b}{a^{2}}+\frac{c}{b^{2}}+\frac{a}{c^{2}} \geq \frac{3(a+b+c)}{a^{2}+b^{2}+c^{2}}$
b. $\frac{b^{3}}{a^{2}}+\frac{c^{3}}{b^{2}}+\frac{a^{3}}{c^{2}} \geq \frac{3\left(a^{2}+b^{2}+c^{2}\right)}{a+b+c}$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam
Solution 1 by Sanong Huayrerai-Nakon Pathom-Thailand
a. For $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>\mathbf{0}$

$$
\begin{aligned}
\frac{a}{c^{2}}+ & \frac{c}{b^{2}}+\frac{b}{a^{2}}=\frac{a^{2}}{a c^{2}}+\frac{c^{2}}{c b^{2}}+\frac{b^{2}}{b a^{2}} \geq \frac{(a+b+c)^{2}}{a c^{2}+c b^{2}+b a^{2}} \\
& \geq \frac{3(a+b+c)^{2}}{(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)}=\frac{3}{a^{2}+b^{2}+c^{2}}
\end{aligned}
$$

b. For $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>\mathbf{0}$

$$
\frac{a^{3}}{c^{2}}+\frac{c^{3}}{b^{2}}+\frac{b^{2}}{a^{2}}=\frac{a^{4}}{a c^{2}}+\frac{c^{4}}{c b^{2}}+\frac{b^{4}}{b a^{2}} \geq \frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}}{a c^{2}+c b^{2}+b a^{2}} \geq \frac{3\left(a^{2}+b^{2}+c^{2}\right)^{2}}{(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)}=\frac{3\left(a^{2}+b^{2}+c^{2}\right)}{(a+b+c)} .
$$

Therefore it is true.

Solution 2 by Ravi Prakash-New Delhi-India

a. Consider $\left(\boldsymbol{a}^{2}+\boldsymbol{b}^{2}+\boldsymbol{c}^{2}\right)\left(\frac{b}{a^{2}}+\frac{c}{b^{2}}+\frac{a}{c^{2}}\right)=\boldsymbol{b}+\frac{b^{3}}{a^{2}}+\frac{b c^{2}}{a^{2}}+\boldsymbol{c}+\frac{c^{3}}{b^{2}}+\frac{a^{2} c}{b^{2}}+$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
+a+\frac{a^{3}}{c^{2}}+\frac{a b^{2}}{c^{2}}=-2(a+b+c)+\left(2 b+c+\frac{a^{3}}{c^{2}}+\frac{a^{2} c}{b^{2}}\right)+ \\
+\left(2 a+b+\frac{b c^{2}}{a^{2}}+\frac{c^{3}}{b^{2}}\right)+\left(2 c+a+\frac{b^{3}}{a^{2}}+\frac{a b^{2}}{c^{2}}\right) \\
\geq-2(a+b+c)+5\left(b^{2} c \cdot \frac{a^{3}}{c^{2}} \cdot \frac{a^{2} c}{b^{2}}\right)^{\frac{1}{5}}+5\left(a^{2} b \cdot \frac{b c^{2}}{a^{2}} \cdot \frac{c^{3}}{b^{2}}\right)^{\frac{1}{5}}+ \\
+5\left(c^{2} a \cdot \frac{b^{3}}{a^{2}} \cdot \frac{a b^{2}}{c^{2}}\right)^{\frac{1}{5}}=-2(a+b+c)+5(a+c+b)=3(a+b+c)
\end{gathered}
$$

Solution 3 by Nguyen Ngoc Tu-Ha Giang-Vietnam

a. We have $\frac{b}{a^{2}}+\frac{c}{b^{2}}+\frac{a}{c^{2}} \geq \frac{3(a+b+c)}{a^{2}+b^{2}+c^{2}} \Leftrightarrow \frac{a^{2}+b^{2}+c^{2}}{a+b+c}\left(\frac{b}{a^{2}}+\frac{c}{b^{2}}+\frac{a}{c^{2}}\right) \geq 3$

Use Cauchy - Schwarz and AM-GMinequality we have

$$
\begin{gathered}
a^{2}+b^{2}+c^{2} \geq \frac{1}{3}(a+b+c)^{2} \Rightarrow \frac{a^{2}+b^{2}+c^{2}}{a+b+c} \geq \frac{a+b+c}{3} \geq \sqrt[3]{a b c} \text { and } \\
\frac{b}{a^{2}}+\frac{c}{b^{2}}+\frac{a}{c^{2}} \geq \frac{3}{\sqrt[3]{a b c}} . \text { Hence } \frac{a^{2}+b^{2}+c^{2}}{a+b+c}\left(\frac{b}{a^{2}}+\frac{c}{b^{2}}+\frac{a}{c^{2}}\right) \geq 3 .
\end{gathered}
$$

b. Use Lemma $(a+b+c)\left(a^{2}+b^{2}+c^{2}\right) \geq 3\left(a^{2} b+b^{2} c+c^{2} a\right)$ and Cauchy - Schwarz
inequality we have $(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)\left(\frac{b^{3}}{a^{2}}+\frac{c^{3}}{b^{2}}+\frac{a^{3}}{c^{2}}\right) \geq$

$$
\begin{gathered}
\geq 3\left(a^{2} b+b^{2} c+c^{2} a\right)\left(\frac{b^{3}}{a^{2}}+\frac{c^{3}}{b^{2}}+\frac{a^{3}}{c^{2}}\right) \geq 3\left(a^{2}+b^{2}+c^{2}\right)^{2} \\
\Rightarrow \frac{b^{3}}{a^{2}}+\frac{c^{3}}{b^{2}}+\frac{a^{3}}{c^{2}} \geq \frac{3\left(a^{2}+b^{2}+c^{2}\right)}{a+b+c}
\end{gathered}
$$

Solution 4 by Soumitra Mandal-Chandar Nagore-India
a. $\sum_{c y c} \frac{b}{a^{2}}=\sum_{c y c} \frac{\left(\frac{b}{a}\right)^{2}}{b} \geq \frac{\left(\frac{b}{a}+\frac{a}{c}+\frac{c}{b}\right)^{2}}{a+b+c} \stackrel{A M \geq G M}{\geq} \frac{9}{a+b+c}$. We need to prove $\frac{9}{a+b+c} \geq \frac{3(a+b+c)}{a^{2}+b^{2}+c^{2}} \Leftrightarrow 3 \sum_{c y c} a^{2} \geq\left(\sum_{c y c} a\right)^{2}$ which is true. $\therefore \sum_{c y c} \frac{b}{a^{2}} \geq \frac{3(a+b+c)}{a^{2}+\boldsymbol{b}^{2}+c^{2}}$ (proved)
b. $\sum_{c y c} \frac{b^{3}}{a^{2}}=\sum_{c y c} \frac{b^{4}}{a^{2} b} \stackrel{\text { Bergstrom }}{\geq} \frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}}{a^{2} b+b^{2} c+c^{2} a}$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\text { we need to prove, } \frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}}{a^{2} b+b^{2} c+c^{2} a} \geq \frac{3\left(a^{2}+b^{2}+c^{2}\right)}{a+b+c} \\
\Leftrightarrow\left(\sum_{c y c} a^{2}\right)\left(\sum_{c y c} a\right) \geq 3 \sum_{c y c} a^{2} b \Leftrightarrow \sum_{c y c} a^{3}+\sum_{c y c} a b(a+b) \geq 3 \sum_{c y c} a^{2} b, \text { which is } \\
\text { true }\left[\begin{array}{c}
s i n c e, a^{3}+a^{2} b+a b^{2} \geq 3 a^{2} b, \\
b^{3}+b^{2} c+b c^{2} \geq 3 b^{2} c \text { and } \\
c^{3}+c^{2} a+c a^{2} \geq 3 c^{2} a
\end{array}\right] ; \sum_{c y c} \frac{b^{3}}{a^{2}} \geq \frac{3\left(a^{2}+b^{2}+c^{2}\right)}{a+b+c} \text { (proved) }
\end{gathered}
$$

JP.093. Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that:
a. $\frac{1}{a+b c}+\frac{1}{b+c a}+\frac{1}{c+a b} \leq \frac{1}{4 a b c}$
b. $\frac{\sqrt{a}}{a+\sqrt{b c}}+\frac{\sqrt{b}}{b+\sqrt{c a}}+\frac{\sqrt{c}}{c+\sqrt{a b}} \leq \frac{1}{2 \sqrt{a b c}}$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam
Solution 1 by Vadim Mitrofanov-Kiev-Ukraine

$$
\begin{gathered}
\sum_{c y c} \frac{1}{a+b c}=\sum_{c y c} \frac{1}{(a+b)(a+c)}=\frac{2}{(a+b)(b+c)(a+c)} \leq \frac{1}{4 a b c} \\
\sum_{c y c} \frac{\sqrt{a}}{a+\sqrt{b c}} \leq \sum_{c y c} \frac{\sqrt{a}}{2 \sqrt{a \sqrt{b c}}}=\frac{\sqrt[4]{a}+\sqrt[4]{b}+\sqrt[4]{c}}{2 \sqrt[4]{a b c}} \leq \frac{1}{2 \sqrt{a b c}} \Leftrightarrow(\sqrt[4]{a}+\sqrt[4]{b}+\sqrt[4]{c})^{4} a b c \leq 1
\end{gathered}
$$

$$
\text { we have }(\sqrt[4]{a}+\sqrt[4]{b}+\sqrt[4]{c})^{4} \leq(3(\sqrt{a}+\sqrt{b}+\sqrt{c}))^{2} \leq 27 \Rightarrow 27 a b c \leq(a+b+c)^{3}=1
$$

Solution 2 by Ravi Prakash-New Delhi-India

$$
\begin{gather*}
\frac{1}{a+b c}+\frac{1}{b+c a}+\frac{1}{c+a b} \leq \frac{1}{4 a b c} \\
\Leftrightarrow \frac{1}{1-b-c+b c}+\frac{1}{1-c-a+c a}+\frac{1}{1-a-b+a b} \leq \frac{1}{4 a b c} \\
\Leftrightarrow \frac{1}{(1-b)(1-c)}+\frac{1}{(1-c)(1-a)}+\frac{1}{(1-a)(1-b)} \leq \frac{1}{4 a b c} \\
\Leftrightarrow \frac{(1-a)+(1-b)+(1-c)}{(1-a)(1-b)(1-c)} \leq \frac{1}{4 a b} \Leftrightarrow 8 a b c \leq(1-a)(1-b)(1-c) \\
\Leftrightarrow 8 a b c \leq 1-(a+b+c)+a b+b c+c a-a b c \\
\Leftrightarrow 9 a b c \leq a b+b c+c a \Leftrightarrow 9 \leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \tag{1}
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
But $\frac{1}{3}=\frac{a+b+c}{3} \geq \frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}} \Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq 9$. Thus (1) is true. For $a, b, c>0, a+b+c=1$,

$$
\begin{gather*}
\frac{2 \sqrt{a b c} \sqrt{a}}{a+\sqrt{b c}}=\frac{2 a \sqrt{b c}}{a+\sqrt{b c}} \leq \frac{a+\sqrt{b c}}{2} \\
\therefore 2 \sqrt{a b c}\left[\frac{\sqrt{a}}{a+\sqrt{b c}}+\frac{\sqrt{b}}{b+\sqrt{c a}}+\frac{\sqrt{c}}{c+\sqrt{a b}}\right] \leq \frac{1}{2}[a+b+c+\sqrt{b c}+\sqrt{c a}+\sqrt{a b}](1) \\
\text { But, } \sqrt{b c}+\sqrt{c a}+\sqrt{a b}=\sqrt{b} \sqrt{c}+\sqrt{c} \sqrt{a}+\sqrt{a} \sqrt{b} \leq \\
\leq(\sqrt{a})^{2}+(\sqrt{b})^{2}+(\sqrt{c})^{2}=a+b+c \tag{2}
\end{gather*}
$$

From (1), (2): $\sqrt[2]{a b c}\left[\frac{\sqrt{a}}{a+\sqrt{b c}}+\frac{\sqrt{b}}{b+\sqrt{c a}}+\frac{\sqrt{c}}{c+\sqrt{a b}}\right] \leq \frac{1}{2}[a+b+c+a+b+c]=1$

Solution 3 by Myagmarsuren Yadamsuren-Darkhan-Mongolia

$$
\begin{gathered}
\text { a. } \frac{1}{a+b c}+\frac{1}{b+c a}+\frac{1}{c+a b} \leq \frac{1}{4 a b c} \\
=\frac{a+b+c=1}{} \begin{array}{c}
\frac{\sum(a+b c)(b+c a)}{\prod(a+b c)}=\frac{\sum a b+\sum a b(a+b)+a b c \sum a}{a b c+a^{2} b^{2} c^{2}+a b c \cdot \sum a^{2}+\sum a^{2} b^{2}} \\
=\frac{\sum a b+\sum a b \cdot \sum a-2 a b c \sum a}{a b c+a^{2} b^{2} c^{2}+a b c\left(\left(\sum a\right)^{2}-2 \sum a b\right)+\left(\left(\sum a b\right)^{2}-2 a b c \sum a\right)} \\
=\frac{q+q \cdot p-2 p r}{r+r^{2}+r\left(p^{2}-2 q\right)+\left(q^{2}-2 p r\right)}= \\
= \\
r+r^{2}+r(1-2 q)+\left(q^{2}-2 r\right)
\end{array} \frac{2 q-2 r-2 r+r^{2}-2 r q+q^{2}}{2 r}= \\
=\frac{2(q-r)}{(q-r)^{2}}=\frac{q}{q-r} \stackrel{p=1}{=} \frac{2}{p q-r} \stackrel{p q \geq 9 r}{\geq} \frac{2}{8 r}=\frac{1}{4 r} \\
a=b=c=\frac{1}{3}
\end{gathered}
$$

Solution 4 by Soumitra Mandal-Chandar Nagore-India

$$
\begin{gathered}
\sum_{c y c} \frac{1}{a+b c}=\sum_{c y c} \frac{1}{a(a+b+c)+b c}=\sum_{c y c} \frac{1}{(a+b)(a+c)} \\
=\frac{1}{(a+b)(b+c)(c+a)} \sum_{c y c}(a+b)=\frac{2(a+b+c)}{\prod_{c y c}(a+b)} \leq \frac{2}{8 a b c}=\frac{1}{4 a b c} \\
\text { (proved) }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
b. $\sum_{c y c} \frac{2 a \sqrt{b c}}{a+\sqrt{b c}}=\sum_{c y c} \frac{2}{\frac{1}{a}+\frac{1}{\sqrt{b c}}} \stackrel{H M \leq A M}{\leq} \sum_{c y c} \frac{a+\sqrt{b c}}{2}=\frac{1}{2} \sum_{c y c} a+\frac{1}{2} \sum_{c y c} \sqrt{a b}$

$$
\leq \sum_{c y c} a=1 \Rightarrow \sum_{c y c} \frac{\sqrt{a}}{a+\sqrt{b c}} \leq \frac{1}{2 \sqrt{a b c}}
$$

Solution 5 by Sanong Huayrerai-Nakon Pathom-Thailand

For $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>0, a+b+c=1$, we give: $\boldsymbol{a}=\frac{\boldsymbol{x}}{x+y+\boldsymbol{z}}, \boldsymbol{b}=\frac{\boldsymbol{y}}{x+y+z}, \boldsymbol{c}=\frac{z}{x+y+z}$
Consider, since $4 x y z((x+y)+(y+z)+(z+x)) \leq(x+y+z)(x+y)(y+z)(z+x)$

$$
\begin{gathered}
\text { Hence } \frac{(x+y)+(y+z)+(z+x)}{(x+y)(y+z)(z+x)} \leq \frac{(x+y+z)}{4 x y z} \\
\text { Hence } \frac{1}{(y+z)(z+x)}+\frac{1}{(x+y)(z+x)}+\frac{1}{(x+y)(y+z)} \leq \frac{(x+y+z)}{4 x y z} \\
\text { Hence } \frac{1}{x(x+y+z)+y z}+\frac{1}{y(x+y+z)+z x}+\frac{1}{z(x+y+z)+x y} \leq \frac{(x+y+z)}{4(x y z)} \\
\text { Hence } \frac{(x+y+z)^{3}}{x(x+y+z)+y z}+\frac{(x+y+z)^{2}}{y(x+y+z)+z x}+\frac{(x+y+z)^{2}}{z(x+y+z)+x y} \leq \frac{(x+y+z)^{3}}{4 x y z} \\
\text { Hence } \frac{1}{\frac{x}{(x+y+z)}+\frac{y z}{(x+y+z)^{2}}}+\frac{1}{\frac{y}{(x+y+z)}+\frac{z x}{(x+y+z)^{2}}}+\frac{1}{\frac{z}{(x+y+z)}+\frac{x y}{(x+y+z)^{2}}} \leq \frac{1}{\frac{4(x y z)}{(x+y+z)^{3}}}
\end{gathered}
$$

$$
\text { Therefore } \frac{1}{a+b c}+\frac{1}{b+c a}+\frac{1}{c+a b} \leq \frac{1}{4 a b c} \text { is to be true. }
$$

Solution 6 by Nguyen Ngoc Tu-Ha Giang-Vietnam

a. We have $1=(a+b+c)^{2} \geq 3(a b+b c+c a) \Rightarrow a b+b c+c a \leq \frac{1}{3}$

$$
\begin{gathered}
\frac{1}{a+b c}+\frac{1}{b+c a}+\frac{1}{c+a b} \leq \frac{1}{4 a b c} \Leftrightarrow \frac{a b c}{a+b c}+\frac{a b c}{b+c a}+\frac{a b c}{c+a b} \leq \frac{1}{4} \\
\Leftrightarrow \sum \frac{a(a+b c)-a^{2}}{a+b c} \leq \frac{1}{4} \Leftrightarrow \sum \frac{a^{2}}{a+b c} \geq \frac{3}{4} \text { with } a+b+c=1
\end{gathered}
$$

Using Cauchy - Schwarz we have: $\sum \frac{a^{2}}{a+b c} \geq \frac{(a+b+c)^{2}}{a+b+c+a b+b c+c a} \geq \frac{1}{1+\frac{1}{3}}=\frac{3}{4}$

b. We have

$$
\begin{gathered}
\frac{1}{3} \geq a b+b c+c a \geq \frac{1}{3}(\sqrt{a b}+\sqrt{b c}+\sqrt{c a})^{2} \Rightarrow \sqrt{a b}+\sqrt{b c}+\sqrt{c a} \leq 1 \\
\frac{\sqrt{a}}{a+\sqrt{b c}}+\frac{\sqrt{b}}{b+\sqrt{c a}}+\frac{\sqrt{c}}{c+\sqrt{a b}} \leq \frac{1}{2 \sqrt{a b c}} \Leftrightarrow \sum \frac{a \sqrt{b c}}{a+\sqrt{b c}} \leq \frac{1}{2}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\Leftrightarrow \sum \frac{a(a+\sqrt{b c})-a^{2}}{a+\sqrt{b c}} \leq \frac{1}{2} \Leftrightarrow \sum \frac{a^{2}}{a+\sqrt{b c}} \geq \frac{1}{2}
$$

Using Ca uchy - Schwarz: $\sum \frac{a^{2}}{a+\sqrt{b c}} \geq \frac{(a+b+c)^{2}}{a+b+c+\sqrt{a b}+\sqrt{b c}+\sqrt{c a}} \geq \frac{1^{2}}{1+1}=\frac{1}{2}$

JP.094. Let a, b, c be positive real numbers such that $a b+b c+c a=1$. Prove that:

$$
b c \sqrt{a^{2}+2 b}+c a \sqrt{b^{2}+2 c a}+a b \sqrt{c^{2}+2 a b} \geq 1
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam
Solution by proposer

By Hölder's inequality we obtain:

$$
\left(\sum_{c y c} b c \sqrt{a^{2}+2 b c}\right)^{2}\left(\frac{b c}{a^{2}+2 b c}+\frac{c a}{b^{2}+2 c a}+\frac{a b}{c^{2}+2 a b}\right) \geq(b c+c a+a b)^{3}=1
$$

The proof will be completed if we show that $\frac{b c}{a^{2}+2 b c}+\frac{c a}{b^{2}+2 c a}+\frac{a b}{c^{2}+2 a b} \leq 1$. Indeed, we will use Cauchy - Schwarz inequality by the following way

$$
\begin{gathered}
\sum_{c y c} \frac{b c}{a^{2}+2 b c}=\sum_{c y c} \frac{\left(a^{2}+2 b c\right)-a^{2}}{2\left(a^{2}+2 b c\right)}= \\
=\frac{3}{2}-\sum_{c y c} \frac{a^{2}}{2\left(a^{2}+2 b c\right)} \leq \frac{3}{2}-\frac{(a+b+c)^{2}}{2\left(a^{2}+2 b c+b^{2}+2 c a+c^{2}+2 a b\right)}=1 \text { and weare done. }
\end{gathered}
$$

JP.095. Prove that for all positive real numbers a, b, c :

$$
\frac{a\left(b^{2}+c^{2}\right)}{2 a^{2}+b c}+\frac{b\left(c^{2}+a^{2}\right)}{2 b^{2}+c a}+\frac{c\left(a^{2}+b^{2}\right)}{2 c^{2}+a b} \geq \frac{6 a b c}{a b+b c+c a}
$$

Proposed by Hung Nguyen Viet-Hanoi-Vietnam
Solution by Soumava Chakraborty-Kolkata-India

$$
\sum \frac{a\left(b^{2}+c^{2}\right)}{2 a^{2}+b c}=\sum \frac{a b c\left(b^{2}+c^{2}\right)}{b c\left(2 a^{2}+b c\right)}=a b c \sum \frac{b^{2}+c^{2}}{b c\left(2 a^{2}+b c\right)} \geq
$$

$$
\stackrel{\text { BERGSTROM }}{\geqq} a b c \cdot \frac{2\left(\sum a\right)^{2}}{\sum b^{2} c^{2}+2 a b c \sum a}=a b c \cdot \frac{2\left(\sum a\right)^{2}}{\left(\sum a b\right)^{2}} \geq a b c \cdot \frac{2 \cdot 3 \sum a b}{\left(\sum a b\right)^{2}}=\frac{6 a b c}{a b+b c+c a}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
JP.096. Let a, b, c positive numbers such that $a^{4}+b^{4}+c^{4}=3$. Prove that:

$$
\left(\frac{a^{3}}{b^{5}}+\frac{b^{3}}{c^{5}}+\frac{c^{3}}{a^{5}}\right)\left(\frac{b^{3}}{a^{5}}+\frac{c^{3}}{b^{5}}+\frac{a^{3}}{c^{5}}\right) \geq 9
$$

Proposed by Nguyen Ngoc Tu-Ha Giang-Vietnam
Solution 1 by Do Huu Duc Thinh-Ho Chi Minh-Vietnam

$$
\begin{gathered}
\left(\frac{a^{3}}{b^{5}}+\frac{b^{3}}{c^{5}}+\frac{c^{3}}{a^{5}}\right)\left(\frac{b^{3}}{a^{5}}+\frac{c^{3}}{b^{5}}+\frac{a^{3}}{c^{5}}\right) \stackrel{A M-G M}{\geqq} 3 \sqrt[3]{\frac{1}{a^{2} b^{2} c^{2}}} \cdot 3 \sqrt[3]{\frac{1}{a^{2} b^{2} c^{2}}}= \\
=\frac{9}{\sqrt[3]{a^{4} b^{4} c^{4}}} \stackrel{A M-G M}{\geq} \frac{9}{\frac{a^{4}+b^{4}+c^{4}}{3}}=9
\end{gathered}
$$

Solution 2 by Soumitra M andal-Chandar Nagore-India

$$
\begin{gathered}
\left(\sum \frac{a^{3}}{b^{5}}\right)\left(\sum \frac{b^{3}}{a^{5}}\right)=\left(\sum \frac{\left(\frac{a}{b}\right)^{5}}{a^{2}}\right)\left(\sum \frac{\left(\frac{b}{a}\right)^{5}}{b^{2}}\right) \geq \\
\underset{\text { BERGSTROM }}{\geq} \frac{\left(\sum \frac{a^{\frac{5}{2}}}{b^{\frac{5}{2}}}\right)^{2} \cdot\left(\sum \frac{b^{\frac{5}{2}}}{a^{\frac{5}{2}}}\right)^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}} \stackrel{A M-G M}{\geq} \frac{3^{2} \cdot 3^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}} \geq \frac{81}{3 \sum a^{4}}=\frac{81}{9}=9
\end{gathered}
$$

Solution 3 by Rozeta Atanasova-Skopje

$$
\begin{gathered}
\left(\frac{a^{3}}{b^{5}}+\frac{b^{3}}{c^{5}}+\frac{c^{3}}{a^{5}}\right)\left(\frac{b^{3}}{a^{5}}+\frac{c^{3}}{b^{5}}+\frac{a^{3}}{c^{5}}\right) \stackrel{A M-G M}{\geq} 3 \sqrt[3]{\frac{1}{a^{2} b^{2} c^{2}}} \cdot 3 \sqrt[3]{\frac{1}{a^{2} b^{2} c^{2}}}= \\
=\frac{9}{\sqrt[3]{a^{4} b^{4} c^{4}}} \stackrel{A M-G M}{\stackrel{9}{2}} \frac{9}{\frac{a^{4}+b^{4}+c^{4}}{3}}=\frac{9}{\frac{3}{3}}=9
\end{gathered}
$$

JP.097. Let $a, b, c>0$ such that $(a+b)(b+c)(c+a)=8$. Prove that:

$$
\frac{a}{a+1}+\sqrt{\frac{2 b}{b+1}}+2 \sqrt[4]{\frac{2 c}{c+1}} \leq \frac{7}{2}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution by Hoang Le Nhat Tung-Hanoi-Vietnam

By AM-GM:

$$
\begin{gather*}
\frac{a}{a+1}+\sqrt{\frac{2 b}{b+1} \cdot 1}+2 \cdot \sqrt[4]{\frac{2 c}{c+1} \cdot 1 \cdot 1 \cdot 1} \leq \frac{a}{a+1}+\frac{\frac{2 b}{b+1}+1}{2}+\frac{2\left(\frac{2 c}{c+1}+1+1+1\right)}{4} \\
=\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+2 \tag{1}
\end{gather*}
$$

We prove that: $\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1} \leq \frac{3}{2}$
$\Leftrightarrow \frac{a(b+1)(c+1)+b(c+1)(a+1)+c(a+1)(b+1)}{(a+1)(b+1)(c+1)} \leq \frac{3}{2}$
$\Leftrightarrow 2(3 a b c+2(a b+b c+c a)+a+b+c) \leq 3(a b c+a b+b c+c a+a+b+c+1)$
$\Leftrightarrow 3 a b c+a b+b c+c a \leq a+b+c+3$
Other: $8=(a+b)(b+c)(c+a) \geq \frac{8}{9}(a+b+c)(a b+b c+c a)$

$$
\begin{gathered}
\Leftrightarrow(a+b+c)(a b+b c+c a) \leq 9 \\
\Rightarrow 9 \geq 3 \sqrt[3]{a b c} \cdot 3 \sqrt[3]{(a b c)^{2}}=9 a b c \Leftrightarrow a b c \leq 1 \quad(3) \\
\left\{\begin{array}{c}
9 \geq(a+b+c)(a b+b c+c a) \geq \sqrt{3(a b+b c+c a)} \cdot(a b+b c+c a) \\
\Rightarrow a b+b c+a c \leq 3
\end{array}\right.
\end{gathered}
$$

$$
\text { (3), (4) } \Rightarrow 3 a b c+a b+b c+c a \leq 6
$$

$$
8=(a+b)(b+c)(c+a) \leq \frac{((a+b)+(b+c)+(c+a))^{3}}{27}=\frac{8(a+b+c)^{3}}{27}
$$

$$
\begin{equation*}
\Rightarrow(a+b+c)^{3} \geq 27 \Rightarrow a+b+c+3 \geq 6 \tag{6}
\end{equation*}
$$

(5), (6) $\Rightarrow 3 a b c+a b+b c+c a \leq a+b+c+3$

$$
\Rightarrow \text { (2) true } \Rightarrow \frac{a}{a+1}+\sqrt{\frac{2 b}{b+1}}+2 \cdot \sqrt[4]{\frac{2 c}{c+1}} \leq \frac{7}{2}
$$

JP.098. Let a, b and c be the side lengths of a triangle $A B C$ with incenter I. Prove that:

$$
\frac{1}{I A^{2}}+\frac{1}{I B^{2}}+\frac{1}{I C^{2}} \geq 3\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right)
$$

Proposed by George Apostolopoulos - Messolonghi - Greece

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gather*}
I A=\frac{r}{\sin \frac{A}{2}} \text { etc } \\
\therefore \sum \frac{1}{I A^{2}}=\frac{1}{r^{2}} \sum \sin ^{2} \frac{A}{2} \tag{1}
\end{gather*}
$$

$$
\begin{equation*}
\text { Also, } 3 \sum \frac{1}{a^{2}}=\frac{3 \sum a^{2} b^{2}}{a^{2} b^{2} c^{2}} \stackrel{\text { Goldstone }}{\leq} \frac{12 R^{2} s^{2}}{16 R^{2} r^{2} s^{2}}=\frac{3}{4 r^{2}} \tag{2}
\end{equation*}
$$

(1), (2) \Rightarrow it suffices to prove: $\sum \sin ^{2} \frac{A}{2} \geq \frac{3}{4} \Leftrightarrow \sum\left(2 \sin ^{2} \frac{A}{2}\right) \geq \frac{3}{2} \Leftrightarrow \sum(1-\cos A) \geq \frac{3}{2}$

$$
\Leftrightarrow 3-1-\frac{r}{R} \geq \frac{3}{2} \Leftrightarrow \frac{2 R-r}{R} \geq \frac{3}{2} \Leftrightarrow R \geq 2 r \rightarrow \text { true (Euler) (proved) }
$$

JP.099. If $x, y, z>0$ and $b \geq a>0$ then:

$$
\begin{gathered}
\int_{a}^{b} \frac{x d y}{3 x^{2}+2 y^{2}+z^{2}}+\int_{a}^{b} \frac{y d z}{3 y^{2}+2 z^{2}+x^{2}}+\int_{a}^{b} \frac{z d x}{3 z^{2}+2 x^{2}+y^{2}} \\
\leq \frac{1}{3} \ln \frac{b}{a}+\frac{b-a}{18}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)
\end{gathered}
$$

Proposed by Mihály Bencze - Romania
Solution by proposer

$$
\begin{gathered}
\text { We have for } x, t, z>0 ; \frac{x}{3 x^{2}+2 t^{2}+z^{2}} \leq \frac{1}{18}\left(\frac{2}{t}+\frac{1}{z}\right) \Leftrightarrow \\
\Leftrightarrow 3 x^{2} t+6 x^{2} z+2 t^{3}+2 z^{3}+4 t^{2} z+t x^{2} \geq 18 x t z \Leftrightarrow \\
\Leftrightarrow \frac{3 x^{2} t+6 x^{2} z+2 t^{3}+2 z^{3}+4 t^{2} z+t z^{2}}{18} \geq \sqrt[18]{\left(x^{2} t\right)^{3}\left(x^{2} t\right)^{6}\left(t^{3}\right)^{2}\left(z^{3}\right)^{2}\left(t^{2} z\right)^{4} t}=x t z \Rightarrow \\
\int_{a}^{b} \frac{x d t}{3 x^{2}+2 t^{2}+z^{2}} \leq \frac{1}{18} \int_{a}^{b}\left(\frac{2}{t}+\frac{1}{z}\right) d t \Rightarrow \int_{a}^{b} \frac{x d t}{3 x^{2}+2 t^{2}+z^{2}} \leq \frac{1}{9} \ln \frac{b}{a}+\frac{b-a}{18 z} \Rightarrow \\
\sum_{\text {cyclic }} \int_{a}^{b} \frac{x d y}{3 x^{2}+2 y^{2}+z^{2}} \leq \sum_{\text {cyclic }}\left(\frac{1}{9} \ln \frac{b}{a}+\frac{b-a}{18 z}\right)=\frac{1}{3} \ln \frac{b}{a}+\frac{b-a}{18}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

JP.100. Let in triangle w_{a}, w_{b}, w_{c} be the angle bisectors and R, r the circumradius and inradius respectively. Prove the inequality:

$$
\frac{3}{R+r} \leq \frac{1}{w_{a}}+\frac{1}{w_{b}}+\frac{1}{w_{c}} \leq \frac{1}{r}
$$

Proposed by D.M. Bătinețu-Giurgiu-Romania, Martin Lukarevski-Skopje-M acedonia Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{equation*}
\frac{1}{w_{a}}+\frac{1}{w_{b}}+\frac{1}{w_{c}} \stackrel{A M \geq G M}{\geq} \frac{3}{\sqrt[3]{w_{a} w_{b} w_{c}}} \rightarrow \tag{1}
\end{equation*}
$$

$$
\text { Now, } \begin{gathered}
w_{a} w_{b} w_{c}=\left(\frac{2 \sqrt{b c}}{b+c}\right. \\
\sqrt{s(s-a)})\left(\frac{2 \sqrt{c a}}{c+a} \sqrt{s(s-b)}\right)\left(\frac{2 \sqrt{a b}}{a+b} \sqrt{s(s-c)}\right) \\
=\frac{8 a b c s \cdot r s}{\Pi(a+b)}=\frac{32 R r^{2} s^{3}}{\Pi(a+b)} \rightarrow \text { (2) }
\end{gathered}
$$

Again, $\Pi(a+b)=2 a b c+\sum a b(2 s-c)=2 s\left(s^{2}+4 R r+r^{2}\right)-4 R r s$

$$
=2 s\left(s^{2}+2 R r+r^{2}\right) \rightarrow(3)
$$

(2), (3) $\Rightarrow W_{a} W_{b} W_{c}=\frac{16 R r^{2} s^{2}}{s^{2}+2 R r+r^{2}} \rightarrow$ (4)

$$
\begin{aligned}
& \text { (4), (1) } \Rightarrow \frac{1}{w_{a}}+\frac{1}{w_{b}}+\frac{1}{w_{c}} \geq 3 \sqrt[3]{\frac{s^{2}+2 R r+r^{2}}{16 R r^{2} s^{2}}} \geq \frac{3}{R+r} \\
& \Leftrightarrow(R+r)^{3}\left(s^{2}+2 R r+r^{2}\right) \geq 16 R r^{2} s^{2} \rightarrow \text { (a) }
\end{aligned}
$$

Now, LHS of (a) $\stackrel{\text { Gerretsen }}{\geq}(R+r)^{3}\left(18 R r-4 r^{2}\right)$ and
RHS $\stackrel{\text { Gerretsen }}{\leq} 16 R r^{2}\left(4 R^{2}+4 R r+3 r^{2}\right)$
\therefore in order to prove (a), it suffices to prove:

$$
\begin{gathered}
(R+r)^{3}\left(18 R r-4 r^{2}\right) \geq 16 R r^{2}\left(4 R^{2}+4 R r+3 r^{2}\right) \\
\left.\Leftrightarrow 9 t^{4}-7 t^{3}-11 t^{2}-21 t-2 \geq 0 \text { (where } t=\frac{R}{r}\right) \\
\Leftrightarrow(t-2)\left(9 t^{3}+11 t^{2}+11 t+1\right) \geq 0 \rightarrow \text { true } \because t \geq 2 \text { (Euler) }
\end{gathered}
$$

\Rightarrow (a) is true $\Rightarrow \frac{1}{w_{a}}+\frac{1}{w_{b}}+\frac{1}{w_{c}} \geq \frac{3}{R+r}$ is proved. Now, $\frac{1}{w_{a}}+\frac{1}{w_{b}}+\frac{1}{w_{c}} \leq \frac{1}{r} \Leftrightarrow \frac{\sum w_{a} w_{b}}{w_{a} w_{b} w_{c}} \leq \frac{1}{r}$

$$
\sum w_{a} w_{b}=\sum\left(\left(\frac{2 \sqrt{b c}}{b+c} \sqrt{s(s-a)}\right)\left(\frac{2 \sqrt{c a}}{c+a} \sqrt{s(s-b)}\right)\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{aligned}
& =\frac{4 s \sqrt{a b c}}{\prod(a+b)} \sum[((a+b) \sqrt{c})(\sqrt{(s-a)(s-b)})] \\
& \stackrel{c-B-s}{\leq} \frac{4 s \sqrt{a b c}}{\prod(a+b)} \sqrt{\sum c(a+b)^{2}} \sqrt{\sum(s-a)(s-b)} \\
& =\frac{4 s \sqrt{a b c}}{\prod(a+b)} \sqrt{\sum c\left(a^{2}+2 a b+b^{2}\right)} \sqrt{\sum\left(s^{2}-s(a+b)+a b\right)} \\
& =\frac{4 s \sqrt{a b c}}{\prod(a+b)} \sqrt{\sum a b(2 s-c)+6 a b c} \sqrt{3 s^{2}-4 s^{2}+s^{2}+4 R r+r^{2}} \\
& =\frac{4 s \sqrt{a b c}}{\prod(a+b)} \sqrt{2 s\left(s^{2}+4 R r+r^{2}\right)+12 R r s} \sqrt{4 R r+r^{2}} \\
& =\frac{4 s \sqrt{a b c}}{\prod(a+b)} \sqrt{2 s\left(s^{2}+10 R r+r^{2}\right)} \sqrt{4 R r+r^{2}} \\
& =\frac{4 s \sqrt{4 R r s}}{2 s\left(s^{2}+2 R r+r^{2}\right)} \sqrt{2 s\left(s^{2}+10 R r+r^{2}\right)} \sqrt{4 R r+r^{2}} \text { (by (3)) } \\
& \therefore \sum w_{a} W_{b} \leq \frac{4 s \sqrt{4 R r s}}{2 s\left(s^{2}+2 R r+r^{2}\right)} \sqrt{2 s\left(s^{2}+10 R r+r^{2}\right)} \sqrt{4 R r+r^{2}} \rightarrow \text { (5) } \\
& \therefore \frac{\sum w_{a} w_{b}}{w_{a} w_{b} w_{c}} \stackrel{b y(5),(4)}{\leq} \frac{4 s \sqrt{4 R r s}}{2 s\left(s^{2}+2 R r+r^{2}\right)} \sqrt{2 s\left(s^{2}+10 R r+r^{2}\right)} \sqrt{4 R r+r^{2}} \cdot \frac{s^{2}+2 R r+r^{2}}{16 R r^{2} s^{2}} \\
& =\frac{\sqrt{4 R r s}}{8 R r^{2} s^{2}} \sqrt{2 s\left(s^{2}+10 R r+r^{2}\right)} \sqrt{4 R r+r^{2}} \\
& =\frac{\sqrt{R(4 R+r)\left(s^{2}+10 R r+r^{2}\right)}}{2 \sqrt{2} R r s} \stackrel{1}{\leq} \frac{1}{r} \Leftrightarrow 8 R^{2} s^{2} \stackrel{?}{\geq} R(4 R+r)\left(s^{2}+10 R r+r^{2}\right) \\
& \Leftrightarrow(4 R-r) s^{2} \stackrel{?}{\geq}(4 R+r)\left(10 R r+r^{2}\right) \rightarrow(b) \\
& \Leftrightarrow 8 R^{2} s^{2} \stackrel{?}{\geq} R(4 R+r)\left(s^{2}+10 R r+r^{2}\right) \\
& \Leftrightarrow(4 R-r) s^{2} \xrightarrow{\geq}(4 R+r)\left(10 R r+r^{2}\right) \rightarrow(b)
\end{aligned}
$$

Now, LHS of $(b) \geq(4 R-r)\left(16 R r-5 r^{2}\right) \stackrel{?}{\geq}(4 R+r)\left(10 R r+r^{2}\right)$

$$
\Leftrightarrow 12 R^{2}-25 R r+2 r^{2} \stackrel{?}{\geq} 0 \Leftrightarrow(R-2 r)(12 R-r) \stackrel{?}{\geq} 0
$$

\rightarrow true $\because R \geq 2 r$ (Euler) $\Rightarrow(b)$ is true $\Rightarrow \frac{1}{w_{a}}+\frac{1}{w_{b}}+\frac{1}{w_{c}} \leq \frac{1}{r}$ is proved.

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

JP.101. Let x, y, z be positive real numbers with $x y z=1$. Prove that:

$$
\frac{\sqrt{x^{4}+1}+\sqrt{y^{4}+1}+\sqrt{z^{4}+1}}{x^{2}+y^{2}+z^{2}} \leq \sqrt{2}
$$

Proposed by George Apostolopoulos-M essolonghi-Greece

Solution by proposer

$$
\begin{gather*}
\text { We have }(x-1)^{4} \geq 0 \Leftrightarrow x^{4}-4 x^{3}+6 x^{2}-4 x+1 \geq 0 \Leftrightarrow \\
\Leftrightarrow 2 x^{4}-4 x^{3}+6 x^{2}-4 x+2 \geq x^{4}+1 \Leftrightarrow x^{4}-2 x^{3}+3 x^{2}-2 x+1 \geq \frac{x^{4}+1}{2} \Leftrightarrow \\
\Leftrightarrow\left(x^{2}-x+1\right)^{2} \geq \frac{x^{4}+1}{2} \Leftrightarrow \frac{\sqrt{x^{4}+1}}{\sqrt{2}} \leq x^{2}-x+1 \text {. Similarly } \frac{\sqrt{x^{4}+1}}{\sqrt{2}} \leq y^{2}-y+1 \text {, and } \\
\frac{\sqrt{z^{4}+1}}{\sqrt{2}} \leq z^{2}-z+1 \text {. Adding up these inequalities, we get: } \\
\sqrt{x^{4}+1}+\sqrt{y^{4}+1}+\sqrt{z^{4}+1} \leq \sqrt{2}\left(x^{2}+y^{2}+z^{2}\right)+\sqrt{2}(3-(x+y+z)) \tag{1}
\end{gather*}
$$

By AM-GM inequlity we have $x+y+z \geq 3 \sqrt{x y z}=3$, so $3-(x+y+z) \leq 0$. Now (1)
gives $\sqrt{x^{4}+1}+\sqrt{y^{4}+1}+\sqrt{z^{4}+1} \leq \sqrt{2}\left(x^{2}+y^{2}+z^{2}\right)$, namely
$\frac{\sqrt{x^{4}+1}+\sqrt{y^{4}+1}+\sqrt{z^{4}+1}}{x^{2}+y^{2}+z^{2}} \leq \sqrt{2}$. Equality holds when $x=y=z=1$.

JP.102. Let $x, y, z>0$ be positive real numbers. Then:

$$
\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x} \geq \frac{4 \sqrt{3 x y z(x+y+z)}}{(x+y)(y+z)(z+x)}
$$

Proposed by D.M. Bătinețu-Giurgiu-Romania, M artin Lukarevski-Skopje-M acedonia Solution by Soumitra Mandal-Chandar Nagore-India

$$
\begin{gathered}
\text { We know, }\left(\sum_{c y c} x y\right)^{2} \geq 3 x y z(x+y+z) \\
\sum_{c y c} \frac{1}{x+y} \geq \frac{4 \sqrt{3 x y z(x+y+z)}}{(x+y)(y+z)(z+x)} \leq \frac{4(x y+y z+z x)}{(x+y)(y+z)(z+x)} \text {, we need to prove, } \\
(x+y)(y+z)(z+x)
\end{gathered} \sum_{c y c}(x+y)(x+z) \geq 4(x y+y z+z x) .
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\begin{gathered}
\therefore \sum_{\text {cyc }} \frac{1}{x+y} \geq \frac{4 \sqrt{3 x y z(x+y+z)}}{(x+y)(y+z)(z+x)} \\
\text { (proved) }
\end{gathered}
$$

JP.103. Let $x, y, z>0$ be positive real numbers. Then in triangle $A B C$ with semiperimeter s and inradius r.

$$
\frac{x}{y+z} \cot ^{2} \frac{A}{2}+\frac{y}{z+x} \cot ^{2} \frac{B}{2}+\frac{z}{x+y} \cot ^{2} \frac{C}{2} \geq 18-\frac{s^{2}}{2 r^{2}}
$$

Proposed by D.M. Bătinețu-Giurgiu-Romania, M artin Lukarevski-Skopje-M acedonia Solution by Soumitra Mandal-Chandar Nagore-India

$$
\begin{gathered}
\cot \frac{A}{2}=\frac{p(p-a)}{\Delta}, \cot \frac{B}{2}=\frac{p(p-b)}{\Delta} \operatorname{and} \cot \frac{C}{2}=\frac{p(p-c)}{\Delta} \\
\sum_{c y c} \frac{x}{y+z} \cot ^{2} \frac{A}{2}=(x+y+z) \sum_{c y c} \frac{\cot ^{2} \frac{A}{2}}{y+z}-\sum_{c y c} \cot ^{2} \frac{A}{2} \\
\text { Bergström } \\
\geq \\
=\frac{1}{2}\left(\sum_{c y c} \frac{p}{} \frac{p(p-a)}{2}\right)^{2}-\sum_{c y c}^{2} \frac{p^{2}(p-a)^{2}}{\Delta^{2}}=\frac{p^{2}}{2 r^{2}}-\frac{p^{2}\left\{\left(\sum_{c y c}(p-a)\right)^{2}-2 \sum_{c y c}(p-a)(p-b)\right\}}{\Delta^{2}} \\
=\frac{p^{2}}{2 r^{2}}-\frac{p^{2}-2 r(r+4 R)}{r^{2}}=\frac{2(r+4 R)}{r}-\frac{p^{2}}{2 r^{2}} \geq \frac{2(r+8 r)}{r}-\frac{p^{2}}{2 r^{2}}=18-\frac{p^{2}}{2 r^{2}}
\end{gathered}
$$

JP.104. Let r_{a}, r_{b}, r_{c} be the exradii, $\boldsymbol{h}_{a}, \boldsymbol{h}_{b}, \boldsymbol{h}_{\boldsymbol{c}}$ the altitudes and $\boldsymbol{m}_{a}, \boldsymbol{m}_{\boldsymbol{b}}, \boldsymbol{m}_{\boldsymbol{c}}$ the medians of a triangle $A B C$ with semiperimeter s, circumradius R and inradius r. Then

$$
\frac{r_{a}^{2}}{h_{b} m_{c}}+\frac{r_{b}^{2}}{h_{c} m_{a}}+\frac{r_{c}^{2}}{h_{a} m_{b}} \geq \frac{54 r^{2}}{s^{2}-r^{2}-4 R r}
$$

Proposed by D.M. Bătinețu-Giurgiu-Romania, Martin Lukarevski-Skopje-M acedonia

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 1 by M yagmarsuren Yadamsuren-Darkhan-Mongolia

$$
\begin{aligned}
\frac{r a^{2}}{h_{b} m_{c}}+\frac{r_{b}^{2}}{h_{c} m_{a}}+\frac{r_{c}^{2}}{h_{a} m_{b}} & \geq \frac{54 r^{2}}{p^{2}-r^{2}-4 R r} \\
\text { 1) } r_{a}+r_{b}+r_{c} & =4 R+r
\end{aligned}
$$

2) $h_{b} m_{c}+h_{c} m_{a}+h_{a} m_{b} \stackrel{\substack{h_{a} \leq m_{a} \\ h_{b} \leq m_{b} \\ h_{c} \leq m_{c}}}{\leq} m_{b} m_{c}+m_{c} m_{a}+m_{a} m_{b} \leq m_{a}^{2}+m_{b}^{2}+m_{c}^{2}=\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right)$

$$
\begin{gathered}
\text { LHS: } \sum_{\Delta} \frac{r_{a}^{2}}{h_{b} m_{c}} \stackrel{\text { Bergström }}{\geq} \frac{\left(\sum r_{a}\right)^{2}}{h_{b} m_{c}+h_{c} m_{a}+h_{a} m_{b}} \stackrel{(2) ;(1)}{\geq} \\
\geq \\
\frac{(4 R+r)^{2}}{\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right)} \stackrel{\text { Euler }}{\geq} \frac{81 r^{2}}{\frac{3}{4} \cdot 2\left(p^{2}-4 R r-r^{2}\right)}=\frac{54 r^{2}}{p^{2}-4 R r-r^{2}}
\end{gathered}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gather*}
\because h_{a} \leq m_{a} \text { etc, } \\
\begin{aligned}
& \therefore L H S \\
& \stackrel{h_{a} \leq m_{a}, \text { etc }}{\geq} \sum \frac{r_{a}^{2}}{m_{b} m_{c}} \stackrel{\text { Bergström }}{\geq} \frac{\left(\sum r_{a}\right)^{2}}{\sum m_{b} m_{c}} \stackrel{m_{b} m_{c} \leq \frac{2 a^{2}+b c}{4}}{\geq} \frac{(4 R+r)^{2}}{\sum_{c y c}\left(\frac{2 a^{2}+b c}{4}\right)} \\
&= \frac{4(4 R+r)^{2}}{2 \sum a^{2}+\sum a b}=\frac{4(4 R+r)^{2}}{4\left(s^{2}-4 R r-r^{2}\right)+s^{2}+4 R r+r^{2}} \\
&=\frac{4(4 R+r)^{2}}{5 s^{2}-12 R r-3 r^{2}} \stackrel{?}{\geq} \frac{54 r^{2}}{s^{2}-4 R r-r^{2}} \\
& \Leftrightarrow \frac{2(4 R+r)^{2}}{27 r^{2}} \geq \frac{5\left(s^{2}-4 R r-r^{2}\right)+8 R r+2 r^{2}}{s^{2}-4 R r-r^{2}} \\
& \Leftrightarrow \frac{2(4 R+r)^{2}-135 r^{2}}{27 r^{2}} \geq \frac{8 R r+2 r^{2}}{s^{2}-4 R r-r^{2}} \\
& \Leftrightarrow\left(32 R^{2}+16 R r-133 r^{2}\right)\left(s^{2}-4 R r-r^{2}\right) \geq 27 r^{3}(8 R+2 r)
\end{aligned}
\end{gather*}
$$

LHS of (1) $\stackrel{\text { Gerretsen }}{\geq} 6 r(2 R-r)\left(32 R^{2}+16 R r-133 r^{2}\right) \stackrel{?}{\geq} 27 r^{3}(8 R+2 r)$
$\Leftrightarrow 32 t^{3}-159 t+62 \xrightarrow[\geq]{\geq} 0$ (where $\left.t=\frac{R}{r}\right) \Leftrightarrow(t-2)\left(32 t^{2}+64 t-31\right) \stackrel{?}{\geq} 0 \rightarrow$ true $\because t \geq 2$ (Euler) \Rightarrow (1) is true (Proved)

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

JP.105. Let $m>0$ and F be the area of the triangle $A B C$. Then:

$$
\frac{a^{m+2}}{b^{m}+c^{m}}+\frac{b^{m+2}}{c^{m}+a^{m}}+\frac{c^{m+2}}{a^{m}+b^{m}} \geq 2 \sqrt{3} F
$$

Proposed by D.M. Bătinețu-Giurgiu-Romania, M artin Lukarevski-Skopje-M acedonia Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\text { LHS }=\sum_{c y c}\left(a^{2} \cdot \frac{x}{y+z}\right)\left(x=a^{m}, y=b^{m}, z=c^{m}\right) \\
\geq 4 F \sqrt{\frac{x}{y+z} \cdot \frac{y}{z+x}+\frac{y}{z+x} \cdot \frac{z}{x+y}+\frac{z}{x+y} \cdot \frac{x}{y+z}} \\
\left(\begin{array}{c}
\because a^{2} m^{\prime}+b^{2} n^{\prime}+c^{2} p^{\prime} \geq 4 R \sqrt{m^{\prime} n^{\prime}+n^{\prime} p^{\prime}+p^{\prime} m^{\prime}} \\
\forall m^{\prime}, n^{\prime}, p^{\prime} \in \mathbb{R}^{+} a n d a s, \frac{x}{y+z}, \frac{y}{z+x}, \frac{z}{x+y}>0 \\
\because x, y, z>0
\end{array}\right) \\
\Leftrightarrow \frac{?}{\geq 2 \sqrt{3} F} \\
\begin{array}{c}
x y \\
(y+z)(z+x)
\end{array} \frac{y z}{(z+x)(x+y)}+\frac{z x}{(x+y)(y+z)} \stackrel{?}{4} \\
\Leftrightarrow \frac{\sum\{x y(x+y)\}}{2 x y z+\sum x^{2} y+\sum x y^{2}} \stackrel{?}{4} \frac{3}{4} \\
\Leftrightarrow 4 \sum x^{2} y+4 \sum x y^{2} \geq 6 x y z+3 \sum x^{2} y+3 \sum x y^{2} \\
\Leftrightarrow \sum x^{2} y+\sum x y^{2} \geq 2 x y z \rightarrow \operatorname{true} \text { by AM-GM }
\end{gathered}
$$

SP.091. Prove that for all positive real numbers a, b, c, d :
$\frac{a^{2}}{a+b+c}+\frac{b^{2}}{b+c+d}+\frac{c^{2}}{c+d+a}+\frac{d^{2}}{d+a+b} \geq \frac{a+b+c+d}{3}+\frac{4(2 a+b-2 c-d)^{2}}{27(a+b+c+d)}$
Proposed by Nguyen Viet Hung - Hanoi - Vietnam
Solution by proposer

$$
\text { We have: } \frac{a^{2}}{a+b+c}=\frac{5 a-b-c}{9}+\frac{(b+c-2 a)^{2}}{9(a+b+c)}, \frac{b^{2}}{b+c+d}=\frac{5 b-c-d}{9}+\frac{(c+d-2 b)^{2}}{9(b+c+d)},
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$\frac{c^{2}}{c+d+a}=\frac{5 c-d-a}{9}+\frac{(d+a-2 c)^{2}}{9(c+d+a)}, \frac{d^{2}}{d+a+b}=\frac{5 d-a-b}{9}+\frac{(a+b-2 d)^{2}}{9(d+a+b)}$
Adding up these relations we obtain: $\sum_{c y c} \frac{a^{2}}{a+b+c}=\frac{a+b+c+d}{3}+\sum_{c y c} \frac{(b+c-2 a)^{2}}{9(a+b+c)}$.
Now we use Cauchy - Schwarz inequaity (or Titu's lemma) to get

$$
\begin{gathered}
\sum_{c y c} \frac{(b+c-2 a)^{2}}{9(a+b+c)}=\frac{(b+c-2 a)^{2}}{9(a+b+c)}+\frac{(c+d-2 b)^{2}}{9(b+c+d)}+\frac{(-d-a+2 c)^{2}}{9(c+d+a)}+ \\
+\frac{(-a-b+2 d)^{2}}{9(d+a+b)} \geq \frac{4(2 a+b-2 c-d)^{2}}{27(a+b+c+d)}
\end{gathered}
$$

Therefore $\frac{a^{2}}{a+b+c}+\frac{b^{2}}{b+c+d}+\frac{c^{2}}{c+d+a}+\frac{d^{2}}{d+a+b} \geq \frac{a+b+c+d}{3}+\frac{4(2 a+b-2 c-d)^{2}}{27(a+b+c+d)}$ as desired.

SP.092. Prove that for all positive real numbers $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$:
a. $\frac{a^{2}}{a+b}+\frac{b^{2}}{b+c}+\frac{c^{2}}{c+a} \geq \frac{a+b+c}{2}+\frac{(b-c)^{2}}{2(a+b+c)}$
b. $\frac{a^{2}}{b+c}+\frac{b^{2}}{c+a}+\frac{c^{2}}{a+b} \geq \frac{a+b+c}{2}+\frac{(a+b-2 c)^{2}}{2(a+b+c)}$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gather*}
\frac{a^{2}}{a+b}+\frac{b^{2}}{b+c}+\frac{c^{2}}{c+a} \geq \frac{a+b+c}{2}+\frac{(b-c)^{2}}{2(a+b+c)} \\
\text { Given inequality } \Leftrightarrow \frac{\sum a^{2}\left(\sum a b+a^{2}\right)}{(a+b)(b+c)(c+a)} \geq \frac{(a+b+c)^{2}+(a+b-2 c)^{2}}{2(a+b+c)} \\
\Leftrightarrow 2\left(\sum a\right)\left\{\sum a^{4}+\left(\sum a b\right)\left(\sum a^{2}\right)\right\} \geq \\
\geq(a+b)(b+c)(c+a)\left\{(a+b+c)^{2}+(a+b-2 c)^{2}\right\} \\
\Leftrightarrow 2\left(a^{5}+b^{5}+c^{5}\right)+2 a^{4} b+2 a^{4} c+2 a^{3} c^{2}+2 a b^{4}+2 b^{4} c+2 b^{3} c^{2} \geq \\
\geq 4 a^{3} b^{2}+4 a^{2} b^{3}+4 a^{2} b^{2} c+a^{2} b c^{2}+a^{2} c^{3}+a b^{2} c^{2}+a c^{4}+b^{2} c^{3}+b c^{4}(1) \\
\text { Now, } 2\left(a^{5}+a b^{4}\right) \stackrel{A-G}{\geq} 4 a^{3} b^{2} \quad \text { (a) } \\
2\left(b^{5}+a^{4} b\right) \stackrel{A-G}{\geq} 4 a^{2} b^{3} \tag{b}\\
2(\text { (b) } \\
2\left(a^{4} c+b^{4} c\right) \stackrel{A-G}{\geq} 4 a^{2} b^{2} c
\end{gather*} \text { (c) }
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gather*}
c^{2}\left(a^{3}+b^{3}\right) \geq c^{2} a b(a+b)=a^{2} b c^{2}+a b^{2} c^{2} \tag{d}\\
c^{2}\left(a^{3}+c^{3}\right) \geq c^{2} a c(a+c)=a^{2} c^{3}+a c^{4} \tag{e}\\
c^{2}\left(b^{3}+c^{3}\right) \geq c^{2} b c(b+c)=b^{2} c^{3}+b c^{4} \tag{f}
\end{gather*}
$$

$(\mathrm{a})+(\mathrm{b})+(\mathrm{c})+(\mathrm{d})+(\mathrm{e})+(\mathrm{f}) \Rightarrow(1)$ is true
(Proved)

$$
\frac{a^{2}}{b+c}+\frac{b^{2}}{c+a}+\frac{c^{2}}{a+b} \geq \frac{a+b+c}{2}+\frac{(a+b-2 c)^{2}}{2(a+b+c)}
$$

Given inequality $\Leftrightarrow \frac{\sum a^{2}\left(\sum a b+a^{2}\right)}{(a+b)(b+c)(c+a)} \geq \frac{(a+b+c)^{2}+(a+b-2 c)^{2}}{2(a+b+c)}$
$\Leftrightarrow \mathbf{2}\left(\sum a\right)\left\{\sum a^{4}+\left(\sum a b\right)\left(\sum a^{2}\right)\right\} \geq$
$\geq(a+b)(b+c)(c+a)\left\{(a+b+c)^{2}+(a+b-2 c)^{2}\right\}$
$\Leftrightarrow 2\left(a^{5}+b^{5}+c^{5}\right)+2 a^{4} b+2 a^{4} c+2 a^{3} c^{2}+2 a b^{4}+2 b^{4} c+2 b^{3} c^{2} \geq$
$\geq 4 a^{3} b^{2}+4 a^{2} b^{3}+4 a^{2} b^{2} c+a^{2} b c^{2}+a^{2} c^{3}+a b^{2} c^{2}+a c^{4}+b^{2} c^{3}+b c^{4}(1)$

$$
\begin{gather*}
\text { Now, } 2\left(a^{5}+a b^{4}\right) \stackrel{A-G}{\geq} 4 a^{3} b^{2} \quad \text { (a) } \\
2\left(b^{5}+a^{4} b\right) \stackrel{A-G}{\geq} 4 a^{2} b^{3} \quad \text { (b) } \\
2\left(a^{4} c+b^{4} c\right) \stackrel{A-G}{\geq} 4 a^{2} b^{2} c \quad \text { (c) } \\
c^{2}\left(a^{3}+b^{3}\right) \geq c^{2} a b(a+b)=a^{2} b c^{2}+a b^{2} c^{2} \quad \text { (d) } \\
c^{2}\left(a^{3}+c^{3}\right) \geq c^{2} a c(a+c)=a^{2} c^{3}+a c^{4} \quad \text { (e) } \tag{e}\\
c^{2}\left(b^{3}+c^{3}\right) \geq c^{2} b c(b+c)=b^{2} c^{3}+b c^{4} \quad \text { (f) } \tag{f}
\end{gather*}
$$

$(\mathrm{a})+(\mathrm{b})+(\mathrm{c})+(\mathrm{d})+(\mathrm{e})+(\mathrm{f}) \Rightarrow(1)$ is true (Proved)

SP.093. Prove that in any triangle $A B C$ the following inequality holds

$$
\frac{(b+c) a}{m_{a}^{2}}+\frac{(c+a) b}{m_{b}^{2}}+\frac{(a+b) c}{m_{c}^{2}} \geq 8
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam
Solution by Soumava Chakraborty-Kolkata-India
Let $s-a=x, s-b=y, s-c=z$. Then $x, y, z>0$ and $s=x+y+z$
$\therefore a=y+z, b=z+x, c=x+y$. Now, given inequality \Leftrightarrow

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$\Leftrightarrow \frac{(b+c) a}{2 b^{2}+2 c^{2}-a^{2}}+\frac{(c+a) b}{2 c^{2}+2 a^{2}-b^{2}}+\frac{(a+b) c}{2 a^{2}+2 b^{2}-c^{2}} \stackrel{(1)}{\geq} 2$
Now, $2 b^{2}+2 c^{2}-a^{2}=2(z+x)^{2}+2(x+y)^{2}-(y+z)^{2}$
$=2 z^{2}+2 x^{2}+4 z x+2 x^{2}+2 y^{2}+4 x y-y^{2}-z^{2}-2 y z$
$=z^{2}+y^{2}+4 x^{2}+2 y z+4 x y+4 z x-4 y z \stackrel{(a)}{=}(y+z+2 z)^{2}-4 y z$
$(a) \Rightarrow \frac{(b+c) a}{2 b^{2}+2 c^{2}-a^{2}}=\frac{(y+z)(y+z+2 x)}{(y+z+2 x)^{2}-4 y z}$ (i)
Similalry, $\frac{(c+a) b}{2 c^{2}+2 a^{2}-b^{2}} \stackrel{(i i)}{=} \frac{(z+x)(z+x+2 y)}{(z+x+2 y)^{2}-4 z x} \& \frac{(a+b) c}{2 a^{2}+2 b^{2}-c^{2}} \stackrel{(i i i)}{=} \frac{(x+y)(x+y+2 z)}{(x+y+2 z)^{2}-4 x y}$
(i) + (ii) + (iii) \Rightarrow given inequality \Leftrightarrow
$\Leftrightarrow(y+z)(y+z+2 x)\left\{(z+x+2 y)^{2}-4 z x\right\}\left\{(x+y+2 z)^{2}-4 x y\right\}+$
$+(z+x)(z+x+2 y)\left\{(x+y+2 z)^{2}-4 x y\right\}\left\{(y+z+2 x)^{2}-4 y z\right\}+$
$+(x+y)(x+y+2 z)\left\{(y+z+2 x)^{2}-4 y z\right\}\left\{(z+x+2 y)^{2}-4 z x\right\} \geq$
$\geq 2\left\{(x+y+2 z)^{2}-4 x y\right\}\left\{(z+x+2 y)^{2}-4 z x\right\}\left\{(y+z+2 x)^{2}-4 y z\right\}$
$\Leftrightarrow 10 \sum x^{5} y+10 \sum x y^{5}+77 \sum x^{4} y^{2}+77 \sum x^{2} y^{4}+$
$+150 \sum x^{3} y^{3} \stackrel{(2)}{\geq} 118 x y z\left(\sum x^{3}\right)+90 x y z\left(\sum x^{2} y+\sum x y^{2}\right)++78 x^{2} y^{2} z^{2}$
Now, $59 \sum x^{4} y^{2}+59 \sum x^{2} y^{4}=$
$=59\left\{x^{4}\left(y^{2}+z^{2}\right)+y^{4}\left(z^{2}+x^{2}\right)+z^{4}\left(x^{2}+y^{2}\right)\right\} \underset{(i v)}{A-G} 118 x y z\left(\sum x^{3}\right)$
Now, $\forall u, v, w \in \mathbb{R}^{+}, \sum u^{3}+3 u v w \stackrel{\text { Shur }}{\geq} \sum u^{2} v+\sum u v^{2}$ and $\sum u^{3} \stackrel{A-G}{\geq} 3 u v w$
Adding the last $2,2 \sum u^{3} \geq \sum u^{2} v+\sum u v^{2}$ (b)
(b) $\Rightarrow 150 \sum x^{3} y^{3} \geq 75 x y z\left(\sum x^{2} y+\sum x y^{2}\right) \quad$ (v)

Again, $15 \sum x^{4} y^{2}+15 \sum x^{2} y^{4} \stackrel{A-G}{\geq} 30 \sum x^{3} y^{3}$
(vi) $\geq 15 x y z\left(\sum x^{2} y+\sum x y^{2}\right)$ (by (b))

Also, $3 \sum x^{4} y^{2}+3 \sum x^{2} y^{4} \stackrel{A-G}{\geq} 18 x^{2} y^{2} z^{2}$ (vii)

$$
10 \sum x^{5} y+10 \sum x y^{5} \stackrel{A-G}{\geq} 60 x^{2} y^{2} z^{2} \quad \text { (viii) }
$$

(iv) $+(\mathrm{v})+(\mathrm{vi})+($ vii $)+($ viii $) \Rightarrow(2)$ is true (proved)

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

SP.094. Prove that in any acute triangle $A B C$ the following inequality holds

$$
\begin{aligned}
& \frac{\cos B \cos C}{\sin A}+\frac{\cos C \cos A}{\sin B}+\frac{\cos A \cos B}{\sin C} \leq \frac{\sqrt{3}}{2} \\
& \quad \text { Proposed by Nguyen Viet Hung - Hanoi - Vietnam }
\end{aligned}
$$

Solution 1 by Do Huu Duc Thinh-Ho Chi M inh-Vietnam

$$
\sum \frac{\cos A \cos B}{\sin C} \leq \frac{\sqrt{3}}{2}
$$

Since $\triangle A B C$ is acute then $\sin A, \sin B, \sin C>0$. So, the inequality is equivalent to:

$$
\begin{gathered}
\sum \cos A \cos B \sin A \sin B \leq \frac{\sqrt{3}}{2} \sin A \sin B \sin C \Leftrightarrow \\
\quad \Leftrightarrow \sum \sin 2 A \sin 2 B \leq 2 \sqrt{3} \sin A \sin B \sin C
\end{gathered}
$$

We have: $\sum \sin 2 A \sin 2 B \leq \frac{\left(\sum \sin 2 A\right)^{2}}{3}=\frac{[4 \sin A \sin B \sin C]^{2}}{3} \leq 2 \sqrt{3} \sin A \sin B \sin C$

$$
\Leftrightarrow \sin A \sin B \sin C \leq \frac{3 \sqrt{3}}{8}, \text { this is true by AM-GM since: }
$$

$$
\sin A \sin B \sin C \leq \frac{(\sin A+\sin B+\sin C)^{3}}{27} \leq \frac{\left(\frac{3 \sqrt{3}}{2}\right)^{3}}{27}=\frac{3 \sqrt{3}}{8} \Rightarrow \text { Q.E.D. }
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\text { LHS }=\frac{1}{\Pi \sin A} \sum \cos B \cos C \sin B \sin C=\frac{1}{4 \Pi \sin A} \sum(2 \sin B \cos B)(2 \sin C \cos C) \\
=\frac{1}{12 \prod \sin A} \cdot 3 \sum \sin 2 B \sin 2 C \\
\leq \frac{1}{12 \Pi \sin A}\left(\sum \sin 2 A\right)^{2}\left(\because 3 \sum x y \leq\left(\sum x\right)^{2}, \forall x, y, z\right) \\
=\frac{1\left(4 \prod \sin A\right)^{2}}{12\left(\prod \sin A\right)}=\frac{4}{3}(\sin A \sin B \sin C) \\
=\frac{4}{3} \cdot \frac{a b c}{8 R^{3}}=\frac{16 R r s}{24 R^{3}}=\frac{2 r s}{3 R^{2}} \stackrel{\text { Euler }}{\leq} \frac{R S}{3 R^{2}}=\frac{s}{3 R} \stackrel{\text { Mitrinovic }}{\leq} \frac{3 \sqrt{3} R}{2 \cdot 3 R}=\frac{\sqrt{3}}{2} \\
\text { (proved) }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

SP.095. Let a, b, c be the side lengths of a triangle $A B C$ with inradius r and circumradius R. Prove that:

$$
\left(b^{4}+c^{4}\right) \sin ^{2} A+\left(c^{4}+a^{4}\right) \sin ^{2} B+\left(a^{4}+b^{4}\right) \sin ^{2} C \leq \frac{81}{4}\left(3 R^{4}-16 r^{4}\right)
$$

Proposed by George Apostolopoulos - Messolonghi - Greece
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gather*}
L H S=\frac{1}{4 R^{2}}\left\{\left(b^{2}+c^{2}\right)^{2}-2 b^{2} c^{2}\right\} a^{2}+ \\
+\frac{1}{4 R^{2}}\left\{\left(c^{2}+a^{2}\right)^{2}-2 c^{2} a^{2}\right\} b^{2}+\frac{1}{4 R^{2}}\left\{\left(a^{2}+b^{2}\right)^{2}-2 a^{2} b^{2}\right\} c^{2} \leq \frac{81}{4}\left(3 R^{4}-16 r^{4}\right) \\
\Leftrightarrow\left(b^{2}+c^{2}\right)^{2} a^{2}+\left(c^{2}+a^{2}\right)^{2} b^{2}+\left(a^{2}+b^{2}\right)^{2} c^{2} \leq \\
\leq 81 R^{2}\left(3 R^{4}-16 r^{4}\right)+6 a^{2} b^{2} c^{2} \text { (1) } \tag{1}
\end{gather*}
$$

WLOG, we may assume $a \geq b \geq c$. Then, $a^{2}\left(b^{2}+c^{2}\right) \geq b^{2}\left(c^{2}+a^{2}\right) \geq c^{2}\left(a^{2}+b^{2}\right)$

$$
\begin{gathered}
b^{2}+c^{2} \leq c^{2}+a^{2} \leq a^{2}+b^{2} \\
\therefore \text { LHS of (1) } \stackrel{\text { Chebyshev }}{\leq} \frac{1}{3}\left\{\sum a^{2}\left(b^{2}+\boldsymbol{c}^{2}\right)\right\}\left\{\sum\left(b^{2}+\boldsymbol{c}^{2}\right)\right\} \\
=\frac{4}{3}\left(\sum a^{2} b^{2}\right)\left(\sum a^{2}\right) \stackrel{\text { coldstone }}{\leq} \frac{4}{3}\left(4 \boldsymbol{R}^{2} \boldsymbol{s}^{2}\right)\left(\sum a^{2}\right)
\end{gathered}
$$

$$
\begin{gather*}
\stackrel{\text { Leibnitz }}{\leq} \frac{4}{3}\left(4 R^{2} s^{2}\right)\left(9 R^{2}\right)=48 R^{4} s^{2} \stackrel{?}{\leq} 81 R^{2}\left(3 R^{4}-16 r^{4}\right)+96 R^{2} r^{2} s^{2} \\
\Leftrightarrow 16 R^{2} s^{2} \stackrel{?}{\leq} 27\left(3 R^{4}-16 r^{4}\right)+32 r^{2} s^{2} \\
\Leftrightarrow s^{2}\left(16 R^{2}-32 r^{2}\right) \stackrel{?}{\leq} 81 R^{4}-432 r^{4}(2) \tag{2}
\end{gather*}
$$

$$
\begin{aligned}
& \text { Now, LHS of (2) } \stackrel{\text { Gerretsen }}{\leq}\left(4 R^{2}+4 R r+3 r^{2}\right)\left(16 R^{2}-32 r^{2}\right) \stackrel{?}{\leq} 81 R^{4}-432 r^{4} \\
& \Leftrightarrow 17 t^{4}-64 t^{3}+80 t^{2}+128 t-336 \geq 0\left(t=\frac{R}{r}\right) \\
& \Leftrightarrow(t-2)\left\{(t-2)\left(17 t^{2}+4 t+28\right)+224\right\} \geq 0 \rightarrow \text { true } \because t=\frac{R}{r} \geq 2 \text { (Euler) }
\end{aligned}
$$

(Proved)

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

SP.096. Let $A B C$ be a triangle and w_{a}, w_{b}, w_{c} are bisectors of $A B C$. Prove that:

$$
\frac{1}{a w_{a}^{2}}+\frac{1}{b w_{b}^{2}}+\frac{1}{c w_{c}^{2}} \geq \frac{1}{R \Delta}
$$

where R is the circumradius of $A B C, \Delta$ is area of $A B C$.
Proposed by Mehmet șahin - Ankara - Turkey
Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\begin{gather*}
w_{a}^{2}=\frac{4 b^{2} c^{2}}{(b+c)^{2}} \cdot \frac{s(s-a)}{b c}=\frac{4 b c s(s-a)}{(b+c)^{2}} \\
\Rightarrow \frac{1}{a w_{a}^{2}}=\frac{(b+c)^{2}}{4 a b c s(s-a)} \tag{1}
\end{gather*}
$$

Similarly, $\frac{1}{b w_{b}^{2}} \stackrel{(2)}{=} \frac{(c+a)^{2}}{4 a b c s(s-b)} \& \frac{1}{c w_{c}^{2}} \stackrel{(3)}{=} \frac{(a+b)^{2}}{4 a b c s(s-c)}$
(1) + (2) $+(3) \Rightarrow$ LHS $=\frac{1}{4 s \cdot 4 R \Delta} \sum \frac{(a+b)^{2}}{s-c}$
$=\frac{1}{16 s R \Delta} \sum \frac{(s+s-c)^{2}}{s-c}=\frac{1}{16 s R \Delta} \sum \frac{s^{2}+2 s(s-c)+(s-c)^{2}}{s-c}$
$=\frac{1}{16 s R \Delta}\left\{s^{2} \sum \frac{1}{s-c}+2 s \sum(1)+\sum(s-c)\right\}$
$=\frac{1}{16 s R \Delta}\left[\frac{s^{3}}{r^{2} s^{2}} \sum\left\{s^{2}-s(a+b)+a b\right\}+6 s+(3 s-2 s)\right]$
$=\frac{1}{16 s R \Delta}\left\{\frac{s}{r^{2}}\left(3 s^{2}-4 s^{2}+s^{2}+4 R r+r^{2}\right)+7 s\right\}$
$=\frac{1}{16 s R \Delta}\left\{\frac{s(4 R+r)}{r}+7 s\right\}=\frac{s(4 R+8 r)}{16 s R \Delta r}=\frac{R+2 r}{4 r \cdot R \Delta} \stackrel{\text { Euler }}{=} \frac{4 r}{4 r \cdot R \Delta}=\frac{1}{R \Delta} \quad$ (Proved)
Proof 2: $w_{a}^{2} \leq s(s-a) \Rightarrow a w_{a}^{2} \leq a s(s-a) \Rightarrow \frac{1}{a w_{a}^{2}} \geq \frac{1}{a s(s-a)}(1)$

$$
\text { Similarly, } \frac{1}{b w_{b}^{2}} \stackrel{(2)}{\geq} \frac{1}{b s(s-b)} \& \frac{1}{c w_{c}^{2}} \stackrel{(3)}{\geq} \frac{1}{c s(s-c)}
$$

$$
\begin{equation*}
\text { (1) }+ \text { (2) }+ \text { (3) } \Rightarrow \mathrm{LHS} \geq \frac{1}{s} \sum \frac{1}{a(s-a)} \tag{4}
\end{equation*}
$$

WLOG, we may assume $a \geq b \geq c$. Then $\frac{1}{a} \leq \frac{1}{b} \leq \frac{1}{c}$ and $\frac{1}{s-a} \geq \frac{1}{s-b} \geq \frac{1}{s-c}$

$$
\text { (4) } \Rightarrow \text { LHS } \stackrel{\text { Chebyshev }}{\geq} \frac{1}{3 s} \sum \frac{1}{a} \sum \frac{1}{s-a}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\begin{gather*}
=\frac{1}{3 s}\left(\frac{\sum a b}{a b c}\right) \frac{s}{r^{2} s^{2}}\left\{\sum(s-b)(s-c)\right\}=\frac{\left(s^{2}+4 r+r^{2}\right)}{3 r^{2} s^{2} \cdot 4 R \Delta}\left(3 s^{2}-4 s^{2}+s^{2}+4 R r+r^{2}\right) \\
=\frac{\left(s^{2}+4 R r+r^{2}\right)(4 R+r)}{12 r s^{2} R \Delta} \stackrel{?}{\geq} \frac{1}{R \Delta} \\
\Leftrightarrow\left(s^{2}+4 R r+r^{2}\right)(4 R+r) \geq 12 r s^{2} \tag{5}
\end{gather*}
$$

Now, LHS of (5) $\stackrel{\text { Gerretsen }}{\geq}\left(20 R r-4 r^{2}\right)(4 R+r)$

$$
\begin{gathered}
\& \text { RHS of (5) } \stackrel{\text { Gerretsen }}{\leq} 12 r\left(4 R^{2}+4 R r+3 r^{2}\right) \\
\therefore \text { it suffices to prove: }(5 R-r)(4 R+r) \geq 3\left(4 R^{2}+4 R r+3 r^{2}\right) \\
\Leftrightarrow 8 R^{2}-11 R r-10 r^{2} \geq 0 \Leftrightarrow(R-2 r)(8 R+5 r) \geq 0 \rightarrow \text { true } \\
\because R \geq 2 r \text { (Euler) } \Rightarrow(5) \text { is true (Proved) }
\end{gathered}
$$

Solution 2 by Myagmarsuren Yadamsuren-Darkhan-Mongolia

$$
\begin{aligned}
& \begin{aligned}
x & =p-a \\
\sum \frac{1}{a \cdot w_{a}^{2}} \geq \frac{1}{R \cdot \Delta} ; y & =p-b-x+y+z=p \\
z & =p-c
\end{aligned} \Rightarrow x+z \\
& \text { 1) } \sum \frac{1}{a \cdot w_{a}^{2}}=\frac{1}{(y+z) \cdot\left(\frac{2}{2 x+y+z} \cdot \sqrt{x(x+z)(y+x) \cdot \sum x}\right)^{2}}= \\
& =\sum \frac{(2 x+y+z)^{2}}{4 x \prod(x+y) \cdot \sum x} \stackrel{\text { Bergstrom }}{\geq} \frac{\left(\sum(2 x y+y+z)\right)^{2}}{4 \sum x \Pi(x+y)}=\frac{16(x+y+z)^{2}}{4(x+y+z)^{2} \cdot \Pi(x+y)} \\
& =\frac{4}{\prod(x+y)}=L H S \\
& \text { 2) } \frac{1}{R \cdot \Delta}=\frac{1}{\frac{a b c}{4 \Delta} \cdot \Delta}=\frac{4}{a b c}=\frac{4}{\Pi(x+y)}=R H S \\
& \text { 1), 2) } \sum \frac{1}{a w_{a}^{2}} \geq \frac{4}{\Pi(x+y)}=\frac{1}{R \cdot \Delta}
\end{aligned}
$$

SP.097. Let a, b, c be the side lengths of a triangle $A B C$ with incentre I, circumradius R and inradius r. Prove that:

$$
\frac{\sqrt{A I}}{a}+\frac{\sqrt{B I}}{b}+\frac{\sqrt{C I}}{c} \leq \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{R+r}}{r}
$$

Proposed by George Apostolopoulos - Messolonghi - Greece

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \sum \frac{\sqrt{A I}}{a} \stackrel{c-B-S}{\leq} \sqrt{\sum A I} \sqrt{\sum \frac{1}{a^{2}}} \\
& =\sqrt{\sum A I} \sqrt{\frac{\sum a^{2} b^{2}}{a^{2} b^{2} c^{2}}} \stackrel{\text { Goldstone }}{\leq} \frac{2 R s}{4 R r s} \sqrt{\sum A I}=\frac{1}{2 r} \sqrt{\sum A I} \stackrel{?}{\leq} \frac{\sqrt{2(R+r)}}{2 r} \\
& \Leftrightarrow \sum A I \stackrel{?}{\leq} \mathbf{2}(R+r)(1) \\
& \text { Now, } \sum A I=r \sum \sqrt{\frac{b c}{(s-b)(s-c)}} \\
& =\frac{r \sqrt{s}}{\sqrt{s(s-a)(s-b)(s-c)}} \sum \sqrt{b c} \sqrt{s-a} \stackrel{c-B-s}{\leq} \frac{r \sqrt{s}}{r s} \sqrt{\sum a b} \sqrt{3 s-2 s}=\sqrt{\sum a b} \\
& =\sqrt{s^{2}+4 R r+r^{2}} \stackrel{\text { Gerretsen }}{\leq} \sqrt{4 R^{2}+8 R r+4 r^{2}}=\sqrt{4(R+r)^{2}}=2(R+r) \\
& \Rightarrow(1) \text { is true (Proved) }
\end{aligned}
$$

SP.098. Let $A B C$ be an acute triangle with orthocenter H. Prove that:

$$
A H \cdot B H+B H \cdot C H+C H \cdot A H \leq 6 R r,
$$

where R and r are the circumradius and inradius respectively of triangle $A B C$.
Proposed by George Apostolopoulos - Messolonghi - Greece
Solution by Do Huu Duc Thinh-Ho Chi Minh-Vietnam

$$
\begin{gathered}
A H \cdot B H+B H \cdot C H+C H \cdot A H=\sum 4 R^{2} \cdot \cos A \cdot \cos B= \\
=4 R^{2}\left(\frac{p^{2}+r^{2}}{4 R^{2}}-1\right)=p^{2}+r^{2}-4 R^{2} \leq 4 R^{2}+4 R r+3 r^{2}+r^{2}-4 R^{2} \\
=4 R+4 r^{2} \leq 4 R r+2 R r=6 R r \Rightarrow \text { Q.E.D. }
\end{gathered}
$$

SP.099. Let a, b, c be non-negative such that $a+b+c=3$. Prove that:

$$
|(a-b)(b-c)(c-a)| \leq \frac{3 \sqrt{3}}{2} \text {. Equality occurs when? }
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution by Do Huu Duc Thinh-Ho Chi Minh-Vietnam

We will prove that: $(a-b)^{2}(b-c)^{2}(c-a)^{2} \leq \frac{27}{4}$. WLOG, assume that

$$
c=\max \{a ; b ; c\}
$$

$$
c \geq b \geq a \geq \mathbf{0}:(a-b)^{2} \leq b^{2} ;(c-a)^{2} \leq c^{2} \Rightarrow
$$

$$
\Rightarrow(a-b)^{2}(b-c)^{2}(c-a)^{2} \leq b^{2} c^{2} \cdot(b-c)^{2}=\frac{1}{4}(2 b c)^{2} \cdot\left(b^{2}-2 b c+c^{2}\right)
$$

$$
\leq \frac{\left(2 b c+2 b c+b^{2}-2 b c+c^{2}\right)^{3}}{4 \cdot 27}=\frac{(b+c)^{6}}{108} \leq \frac{(a+b+c)^{6}}{108}=\frac{27}{4}
$$

$$
c^{2} \geq a \geq b \geq 0:(a-b)^{2} \leq a^{2} ;(b-c)^{2} \leq c^{2} \Rightarrow(a-b)^{2}(b-c)^{2}(c-a)^{2} \leq
$$

$$
\leq a^{2} c^{2}(c-a)^{2}=\frac{1}{4}(2 a c)^{2} \cdot\left(a^{2}-2 a c+c^{2}\right) \leq \frac{\left(2 a c+2 a c+a^{2}-2 a c+c^{2}\right)^{3}}{4 \cdot 27}
$$

$$
=\frac{(a+c)^{6}}{108} \leq \frac{(a+b+c)^{6}}{108}=\frac{27}{4}
$$

Hence: $(a-b)^{2}(b-c)^{2}(c-a)^{2} \leq \frac{27}{4} \Rightarrow|(a-b)(b-c)(c-a)| \leq \frac{3 \sqrt{3}}{2}$

$$
\text { The equality happens iff }(\boldsymbol{a} ; \boldsymbol{b} ; \boldsymbol{c}) \sim\left(\mathbf{0} ; \frac{3-\sqrt{3}}{2} ; \frac{3+\sqrt{3}}{2}\right)
$$

SP.100. Let a, b, c be the lengths of the sides of a triangle with perimeter 3 and inradius r. Prove that:

$$
288 r^{2} \leq \frac{(a+b)^{4}}{a^{2}+b^{2}}+\frac{(b+c)^{4}}{b^{2}+c^{2}}+\frac{(c+a)^{4}}{c^{2}+a^{2}} \leq \frac{2}{r^{2}}
$$

Proposed by George Apostolopoulos - Messolonghi - Greece
Solution by Soumava Chakraborty-Kolkata-India
In any $\triangle A B C$ with perimeter $=3,288 r^{2} \leq \sum \frac{(a+b)^{4}}{a^{2}+b^{2}} \leq \frac{2}{r^{2}}$

$$
\begin{gathered}
a^{2}+b^{2} \geq \frac{(a+b)^{2}}{2} \text { etc, } \therefore \sum \frac{(a+b)^{4}}{a^{2}+b^{2}} \leq 2 \sum(a+b)^{2} \leq \frac{2}{r^{2}} \\
\Leftrightarrow \sum(a+b)^{2} \leq \frac{\mathbf{1 6} s^{4}}{81 r^{2}}\left(\because s^{4}=\frac{\mathbf{8 1}}{16} a s 2 s=3\right) \Leftrightarrow \sum a^{2}+\sum a b \leq \frac{8 s^{4}}{81 r^{2}} \\
\Leftrightarrow \mathbf{8 s} s^{4} \geq \mathbf{8 1 r} r^{2}\left(3 s^{2}-4 R r-r^{2}\right) \\
\Leftrightarrow 8 s^{4}+324 R r^{3}+81 r^{4} \geq 243 s^{2} r^{2} \rightarrow \text { (1) }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

LHS of (1) $\stackrel{\text { Gerretsen }}{\geq} 8 s^{2}\left(16 R r-5 r^{2}\right)+324 R r^{3}+81 r^{4} \stackrel{?}{\geq} 243 s^{2} r^{2}$ $\Leftrightarrow s^{2}(128 R-256 r)+324 R r^{2}+81 r^{3} \stackrel{?}{\geq} 27 s^{2} r \rightarrow$ (2)

LHS of (2) $\stackrel{\text { Gerretsen }}{\geq}\left(16 R r-5 r^{2}\right)(128 R-256 r)+324 R r^{2}+81 r^{3}$ and, RHS of (2) $\stackrel{\text { Gerretsen }}{\leq} 27 r\left(4 R^{2}+4 R r+3 r^{2}\right)$ \therefore in order to prove (2), it suffices to prove:

$$
\left(16 R r-5 r^{2}\right)(128 R-256 r)+324 R r^{2}+81 r^{3} \stackrel{?}{\geq} 27 r\left(4 R^{2}+4 R r+3 r^{2}\right)
$$

$$
\Leftrightarrow 97 R^{2}-226 R r+64 r^{2} \stackrel{?}{\geq} 0 \Leftrightarrow(R-2 r)(97 R-32 r) \stackrel{?}{\geq} 0 \rightarrow \text { true }
$$

$$
\therefore R \geq 2 r \text { (Euler) } \Rightarrow(2) \text { is true } \therefore \frac{(a+b)^{4}}{a^{2}+b^{2}} \leq \frac{2}{r^{2}}
$$

$$
\text { Again, } \frac{(a+b)^{4}}{a^{2}+b^{2}} \stackrel{\text { Bergstrom }}{\geq} \frac{\left(\sum(a+b)^{2}\right)^{2}}{2 \sum a^{2}} \stackrel{\text { Leibniz }}{\geq} \frac{4\left(\sum a^{2}+\sum a b\right)^{2}}{18 R^{2}} \stackrel{?}{\geq} \mathbf{2 8 8} r^{2}
$$

$$
\Leftrightarrow \sum a^{2}+\sum a b \stackrel{?}{\geq} 36 R r \Leftrightarrow 3 s^{2} \stackrel{?}{\geq} 40 R r+r^{2} \rightarrow \text { (3) }
$$

LHS of (3) $\stackrel{\text { Gerretsen }}{\geq} 48 R r-15 r^{2} \stackrel{?}{\geq} 40 R r+r^{2} \Leftrightarrow 8 R r \stackrel{?}{\geq} 16 r^{2} \Leftrightarrow R \stackrel{?}{\geq} 2 r$

$$
\rightarrow \text { true (Euler) } \Rightarrow \mathbf{(3)} \text { is true } \therefore 288 r^{2} \leq \sum \frac{(a+b)^{4}}{a^{2}+b^{2}}
$$

(proved)

SP.101. Let a, b and c be the side lengths of a triangle with inradius r. Prove that:

$$
\sqrt[4]{\frac{1}{a^{4}+2 b^{2} c^{2}}+\frac{1}{b^{4}+2 c^{2} a^{2}}+\frac{1}{c^{4}+2 a^{2} b^{2}}} \leq \frac{\sqrt{3}}{6 r}
$$

Proposed by George Apostolopoulos - Messolonghi - Greece
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{align*}
a^{4}+2 b^{2} c^{2} & =a^{4}+b^{2} c^{2}+b^{2} c^{2} \stackrel{A-G}{\geq} 3 \sqrt[3]{a^{4} b^{4} c^{4}} \\
& \Rightarrow \frac{1}{a^{4}+2 b^{2} c^{2}} \leq \frac{1}{3 \sqrt[3]{a^{4} b^{4} c^{4}}} \tag{1}
\end{align*}
$$

Similarly, $\frac{1}{b^{4}+2 c^{2} a^{2}} \stackrel{(2)}{\leq} \frac{1}{3 \sqrt[3]{a^{4} b^{4} c^{4}}} \& \frac{1}{c^{4}+2 a^{2} b^{2}} \stackrel{(3)}{\leq} \frac{1}{3 \sqrt[3]{a^{4} b^{4} c^{4}}}$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
& \text { (1)+(2)+(3) } \Rightarrow L H S \leq \sqrt[4]{\frac{1}{\sqrt[3]{a^{4} b^{4} c^{4}}}}=\frac{1}{\sqrt[3]{a b c}} \stackrel{?}{\leq} \frac{\sqrt{3}}{6 r} \Leftrightarrow \sqrt[3]{a b c} \stackrel{(a)}{\geq} \frac{\sqrt{3} \sqrt{3} \cdot 2 r}{\sqrt{3}}=2 \sqrt{3} r \\
& \text { Now, } \sqrt[3]{a b c}=\sqrt[3]{4 R r s} \stackrel{\text { Euler }}{\geq} \sqrt[3]{4(2 r) r s} \\
& \stackrel{s \geq 3 \sqrt{3} r}{\geq} \sqrt[3]{4(2 r) r(3 \sqrt{3} r)}=\sqrt[3]{8 \cdot 3 \sqrt{3} r^{3}}=2 \sqrt{3} r \Rightarrow \text { (a) is true (proved) }
\end{aligned}
$$

SP.102. Let $A B C$ be a triangle with circumradius R and inradius r. Prove that:

$$
4 \leq \sec ^{2} \frac{A}{2}+\sec ^{2} \frac{B}{2}+\sec ^{2} \frac{C}{2} \leq \frac{2 R}{r}
$$

Proposed by George Apostolopoulos - Messolonghi - Greece
Solution 1 by Soumitra M andal-Chandar Nagore-India

$$
\begin{gathered}
a b+b c+c a=p^{2}+r^{2}+4 R r, a b c=4 R r p \text { and } \Pi_{c y c}(p-a)=p r^{2} \\
\text { again, } 9 r(r+4 R) \leq 3 p^{2} \leq(r+4 R)^{2} \\
\sum_{c y c} b c(p-b)(p-c)=p^{2}\left(\sum_{c y c} a b\right)-p \sum_{c y c} a b(a+b)+\sum_{c y c} a^{2} b^{2} \\
=p^{2} \sum_{c y c} a b-p\left(\sum_{c y c} a\right)\left(\sum_{c y c} a b\right)+3 a b c p+\left(\sum_{c y c} a b\right)^{2}-2 a b c \sum_{c y c} a \\
=r^{2}(r+4 R)^{2}+p^{2} r^{2} \text { then } \\
\sum_{c y c} \sec ^{2} \frac{A}{2}=\sum_{c y c} \frac{b c}{p(p-a)}=\frac{r^{2}(r+4 R)^{2}+p^{2} r^{2}}{p(p-a)(p-b)(p-c)}=\left(\frac{r+4 R}{p}\right)^{2}+1 \\
\geq 3+1=4 \text { again, }\left(\frac{r+4 R}{p}\right)^{2}+1 \leq \frac{2 R}{r} \Leftrightarrow \frac{r(r+4 R)^{2}}{2 R-r} \leq p^{2} \text { we will prove, } \\
3 r(r+4 R) \geq \frac{r(r+4 R)^{2}}{2 R-r} \Leftrightarrow 3(2 R-r) \geq r+4 R \Leftrightarrow 2(R-2 r) \geq 0
\end{gathered}
$$

which is true. Hence proved.

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
4 \stackrel{(b)}{\leq} \sec ^{2} \frac{A}{2}+\sec ^{2} \frac{B}{2}+\sec ^{2} \frac{C}{2} \stackrel{(a)}{\leq} \frac{2 R}{r}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
\sum \sec ^{2} \frac{A}{2}=3+\sum \tan ^{2} \frac{A}{2} \\
\stackrel{(1)}{=} 3+\frac{1}{s}\left\{\frac{(s-b)(s-c)}{s-a}+\frac{(s-c)(s-a)}{s-b}+\frac{(s-a)(s-b)}{s-c}\right\}
\end{gathered}
$$

$$
\frac{2 R}{r}=\frac{2 a b c s}{4 \Delta^{2}}=\frac{2 s a b c}{4 s(s-a)(s-b)(s-c)} \stackrel{(2)}{\leq} \frac{a b c}{2(s-a)(s-b)(s-c)}
$$

Let $s-a=x, s-b=y, s-c=z \therefore s=x+y+z$
$\Rightarrow a=y+z, b=z+x, c=x+y ; x, y, z>0$
(1) $\Rightarrow \sum \sec ^{2} \frac{A}{2}=3+\frac{1}{\sum x}\left(\frac{x y}{z}+\frac{y z}{x}+\frac{z x}{y}\right) \stackrel{(3)}{=} \frac{3 x y z\left(\sum x\right)+\sum x^{2} y^{2}}{x y z\left(\sum x\right)}$
(3), (2) \Rightarrow (a) $\Leftrightarrow \frac{\sum x^{2} y^{2}+3 x y z\left(\sum x\right)}{x y z\left(\sum x\right)} \leq \frac{(x+y)(y+z)(z+x)}{2 x y z}$
$\Leftrightarrow\left(\sum x\right)\left(2 x y z+\sum x^{2} y+\sum x y^{2}\right) \geq 2 \sum x^{2} y^{2}+6 x y z\left(\sum x\right)$
$\Leftrightarrow 2 x y z\left(\sum x\right)+\sum x^{3} y+\sum x y^{3}+2 \sum x^{2} y^{2}+2 x y z\left(\sum x\right)$
$\geq 2 \sum x^{2} y^{2}+6 x y z\left(\sum x\right)$
$\Leftrightarrow \sum x^{3} y+\sum \boldsymbol{x} \boldsymbol{y}^{\mathbf{3}} \geq \mathbf{2 x y z}\left(\sum x\right)$
LHS of (4) $\stackrel{A-G}{\geq} 2 \sum x^{2} y^{2} \geq 2 x y z\left(\sum x\right)\left(\because m^{2}+n^{2}+p^{2} \geq m n+n p+p m\right)$

$$
\begin{gathered}
\left.\Rightarrow(4) \text { is true } \Rightarrow(\mathrm{a}) \text { is true } \text { (}^{*}\right) \\
(\mathbf{3}) \Rightarrow \mathbf{(b)} \Leftrightarrow \sum x^{2} y^{2}+3 x y z\left(\sum x\right) \geq 4 x y z\left(\sum x\right) \\
\Leftrightarrow \sum x^{2} y^{2} \geq x y z\left(\sum x\right) \rightarrow \text { true } \Rightarrow(\mathbf{b}) \text { is true (*) (proved) }
\end{gathered}
$$

Solution 3 by Myagmarsuren Yadamsuren-Darkhan-Mongolia

$$
\begin{gathered}
\begin{aligned}
& \sum \sec ^{2} \frac{A}{2}= \sum \frac{b c}{p(p-a)}=\frac{a b c}{p} \cdot \sum \frac{1}{a(p-a)}=\frac{a b c}{p} \cdot \frac{\sum a b(p-a)(p-b)}{a b c \cdot \prod(p-a)} \\
&=\frac{1}{\Delta^{2}} \cdot \sum\left(a b\left(p^{2}-(a+b) p+a b\right)\right)= \\
&=\frac{1}{\Delta^{2}} \cdot\left(p^{2} \cdot \sum a b-p \cdot \sum\left(a^{2} b+a b^{2}\right)+\sum(a b)^{2}\right) \\
&=\frac{1}{\Delta^{2}} \cdot\left(p^{2} \sum a b-p\left(\sum a b \cdot \sum a-3 a b c\right)+\left(\sum a b\right)^{2}-4 p a b c\right)=
\end{aligned}, ~
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
=\frac{1}{\Delta^{2}}\left(p^{2} \sum a b-2 p^{2} \sum a b+3 p a b c+\left(\sum a b\right)^{2}-4 p a b c\right)= \\
=\frac{1}{\Delta^{2}} \cdot\left(-p^{2} \sum a b+\left(\sum a b\right)^{2}-p a b c\right)= \\
=\frac{1}{\Delta^{2}}\left(\sum a b\left(-p^{2}+p^{2}+4 R r+r^{2}\right)-4 p^{2} R r\right)= \\
=\frac{1}{\Delta^{2}}\left(\left(p^{2}+4 R r+r^{2}\right)\left(4 R r+r^{2}\right)-4 p^{2} R r\right)= \\
=\frac{1}{\Delta^{2}}\left(4 R r p^{2}+\Delta^{2}+\left(4 R r+r^{2}\right)^{2}-4 p^{2} R r\right)=1+\frac{\left(4 R r+r^{2}\right)^{2}}{\Delta^{2}}=1+\frac{(4 R+r)^{2}}{p^{2}} \\
\sum \sec ^{2} \frac{A}{2}=1+\frac{(4 R+r)^{2}}{p^{2}} ; 4 \leq 1+\left(\frac{4 R+r}{p}\right)^{2} \leq \frac{2 R}{r}
\end{gathered}
$$

$$
\text { LHS: } 3 \leq\left(\frac{4 R+r}{p}\right)^{2} \Leftrightarrow \sqrt{3} p \leq 4 R+r
$$

RHS: $1+\frac{(4 R+r)^{2}}{p^{2}} \leq \frac{2 R}{r} \Leftrightarrow \frac{(4 R+r)^{2}}{p^{2}} \leq \frac{2 R-r}{r} \Leftrightarrow(4 R+r)^{2} r \leq(2 R-r) p^{2} \Rightarrow$ Gerretsen

$$
16 R^{2} r+8 R r^{2}+r^{3} \leq(2 R-r)\left(16 R r-s r^{2}\right)
$$

$$
\begin{aligned}
& 16 R^{2}+8 R r+r^{2} \leq(2 R-r)(16 R-s r) ; 16 R^{2}-34 R r+4 r^{2} \geq 0 \\
& 8 R^{2}-17 R r+2 r^{2} \geq 0 \mid: r^{2} ; \frac{R}{r}=t \geq 2 \text { (Euler) } \\
& 8 t^{2}-17 t+2 \geq 0 ; \underbrace{(t-2)}_{\geq 0} \underbrace{(8 t-1)}_{>0} \geq 0
\end{aligned}
$$

SP.103. Let m, n be positive real numbers. Prove that:

$$
\left(\frac{1}{m}+\frac{1}{n}\right)^{-1} \leq \frac{4034-2015 m}{m+2017}+\frac{4034-2015 n}{n+2017}+\frac{m+n+2009}{2}
$$

Proposed by Iuliana Trașcă - Romania
Solution by Do Huu Duc Thinh-Ho Chi Minh-Vietnam
The inequality is equivalent to: $4-\frac{2017 m}{m+2017}-\frac{2017 n}{n+2017}+\frac{m+n+2009}{2} \geq \frac{1}{\frac{1}{m}+\frac{1}{n}}$
Applying AM-GM inequality: $4-\frac{2017 m}{m+2017}-\frac{2017 n}{n+2017}+\frac{m+n+2009}{2} \geq$

$$
\geq 4-\frac{m+2017}{4}-\frac{n+2017}{4}+\frac{m+n+2009}{2}=\frac{m+n}{4}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

So we need to prove that: $\frac{m+n}{4} \geq \frac{1}{\frac{1}{m}+\frac{1}{n}} \Leftrightarrow(m+n)^{2} \geq 4 m n \Leftrightarrow(m-n)^{2} \geq 0$ (true) \Rightarrow Q.E.D.

SP.104. Prove that in any triangle $A B C$ the following relationship holds:

$$
r \sum \frac{1}{\sin \frac{A}{2}}+\frac{a b c}{2} \sum \frac{1}{\sqrt{a b s(s-c)}} \leq 6 R
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Soumitra Mandal-Chandar Nagore-India

$$
\begin{aligned}
& \sum_{c y c}(p-a)(p-b)=r(r+4 R), a b c=4 R r p, \sin \frac{A}{2}=\sqrt{\frac{(p-b)(p-c)}{b c}} \\
& \sin \frac{B}{2}=\sqrt{\frac{(p-a)(p-c)}{c a}} \text { and } \sin \frac{C}{2}=\sqrt{\frac{(p-a)(p-b)}{a b}} \\
& r \sum_{c y c} \frac{1}{\sin \frac{A}{2}}+\frac{a b c}{2} \sum_{c y c} \frac{1}{\sqrt{a b p(p-c)}} \\
& \text { Cauchy-Schwarz } \\
& \stackrel{1}{\leq} \quad r \sqrt{\left(\sum_{c y c} a b\right)\left(\sum_{c y c} \frac{1}{(p-a)(p-b)}\right)}+\frac{a b c}{2} \sqrt{\left(\sum_{c y c} \frac{1}{a b}\right)\left(\sum_{c y c} \frac{1}{p(p-a)}\right)} \\
& \leq r \sqrt{9 R^{2} \cdot \frac{\sum_{c y c}(p-a)}{\prod_{c y c}(p-a)}}+\frac{a b c}{2} \sqrt{\frac{2 p}{4 R r p} \cdot \frac{\sum_{c y c}(p-a)(p-b)}{p \prod_{c y c}(p-a)}} \\
& =r \cdot \sqrt{9 R^{2} \frac{p}{p r^{2}}}+2 R r p \sqrt{\frac{1}{2 R r} \cdot \frac{r(r+4 R)}{p^{2} r^{2}}} \leq 3 R+3 R=6 R
\end{aligned}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
r \sum \frac{1}{\sin \frac{A}{2}}=r \sum \sqrt{\frac{b c}{(s-b)(s-c)}}=\frac{r \sqrt{s}}{\sqrt{s(s-a)(s-b)(s-c)}} \sum \sqrt{b c(s-a)} \\
\stackrel{c-B-s}{\leq} \frac{r \sqrt{s}}{r s} \sqrt{\sum a b} \sqrt{\sum(s-a)}=\frac{1}{\sqrt{s}} \sqrt{s} \sqrt{\sum a b}=\sqrt{\sum a b}=\sqrt{s^{2}+4 R r+r^{2}} \\
\underset{(\underset{\text { Ginetsen }}{(1)}}{\leq} \sqrt{4 R^{2}+8 R r+4 r^{2}}=\sqrt{4(R+r)^{2}}=2(R+r)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Now, $\frac{a b c}{2} \sum \frac{1}{\sqrt{a b s(s-c)}}$

$$
\begin{aligned}
& \underset{(2)}{c-B-S} \frac{4 R r s}{2 \sqrt{s}} \sqrt{\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a}} \sqrt{\frac{1}{s-c}+\frac{1}{s-a}+\frac{1}{s-b}}=\frac{4 R r s}{2 \sqrt{s}} \sqrt{\frac{2 s}{4 R r s}} \sqrt{\frac{s \cdot \sum(s-a)(s-b)}{r^{2} s^{2}}} \\
& =\frac{\sqrt{4 R r} \sqrt{2}}{2 r} \sqrt{\sum\left(s^{2}-s(s+b)+a b\right)}=\sqrt{\frac{2 R}{r}} \sqrt{3 s^{2}-s(4 s)+s^{2}+4 R r+r^{2}}=\sqrt{2 R(4 R+r)} \\
& \text { (1) }+\mathbf{(2)} \Rightarrow \mathbf{L H S} \leq \mathbf{2}(R+r)+\sqrt{2 R(4 R+r)} \stackrel{?}{\leq} \mathbf{6 R} \Leftrightarrow \mathbf{2 R (4 R + r) \stackrel { ? } { \leq } 4 (2 R - r) ^ { 2 } , ~} \\
& \Leftrightarrow 4 R^{2}+R r \stackrel{?}{\leq} 8 R^{2}-8 R r+2 r^{2} \Leftrightarrow 4 R^{2}-9 R r+2 r^{2} \stackrel{?}{\geq} 0 \Leftrightarrow(R-2 r)(4 R-r) \stackrel{?}{\geq} 0 \rightarrow \\
& \rightarrow \text { true } \because R \geq 2 r \text { (Euler) (Proved) }
\end{aligned}
$$

SP.105. Let G be the centroid in $\triangle A B C$. Prove that:

$$
\cot (\widehat{G B A})+\cot (\widehat{G C B})+\cot (\widehat{G A C})>\cot A+\cot B+\cot C+3
$$

Proposed by Daniel Sitaru - Romania
Solution by Hoang Le Nhat Tung-Hanoi-Vietnam

$$
\begin{gather*}
B C=a ; C A=b ; A B=c ; S_{A B G}=S_{A C G}=S_{B C G}=\frac{S_{A B C}}{3} \\
\cot \widehat{G B A}+\cot \overline{G C B}+\cot \widehat{G A C}= \\
=\frac{A B^{2}+B G^{2}-A G^{2}}{4 S_{A B G}}+\frac{C G^{2}+B C^{2}-B G^{2}}{4 S_{B G C}}+\frac{A G^{2}+A C^{2}-G A^{2}}{4 S_{A C G}} \\
=\frac{3}{4}\left(\frac{a^{2}+b^{2}+c^{2}}{S_{A B C}}\right)=\frac{a^{2}+b^{2}+c^{2}}{4 S_{A B C}}+\frac{a^{2}+b^{2}+c^{2}}{2 S_{A B C}} \text { (1) } \tag{1}
\end{gather*}
$$

- Other: $S=\sqrt{\boldsymbol{p}(p-a)(p-b)(p-c)} \leq \frac{a b+b c+c a}{4 \sqrt{3}} \leq \frac{a^{2}+b^{2}+c^{2}}{4 \sqrt{3}}$

$$
\begin{equation*}
\Rightarrow \frac{a^{2}+b^{2}+c^{2}}{2 S_{A B C}} \geq 2 \sqrt{3}>3 \tag{2}
\end{equation*}
$$

(1), (2) $\Rightarrow \cot \widehat{G B A}+\cot \widehat{G C B}+\cot \widehat{G A C}>\cot A+\cot B+\cot C+3$

$$
\text { (Because } \cot A+\cot B+\cot C=\frac{a^{2}+b^{2}+c^{2}}{4 S_{A B C}} \text {) }
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

UP.091. Let be $a \in \mathbb{R}_{+}^{*}$ and the continuous functions $f, g, h: \mathbb{R} \rightarrow \mathbb{R}$ where f and g are odd and h is even. Prove that:

$$
\int_{-a}^{a} f(x) \cdot \ln \left(1+e^{g(x)}\right) \cdot \arctan (h(x)) d x=\int_{0}^{a} f(x) g(x) \arctan (h(x)) d x
$$

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania
Solution 1 by Abdallah El Farisi-Bechar-Algerie

$$
\begin{gathered}
\int_{-a}^{a} f(x) \ln \left(1+e^{g(x)}\right) \arctan (h(x)) d x=-\int_{-a}^{a} f(x) \ln \left(1+e^{-g(x)}\right) \arctan (h(x)) d x \\
=-\int_{-a}^{a} f(x)\left(\ln \left(1+e^{g(x)}\right)-g(x)\right) \arctan (h(x)) d x \\
=-\int_{-a}^{a} f(x)\left(\ln \left(1+e^{g(x)}\right)\right) \arctan (h(x)) d x+\int_{-a}^{a} f(x) g(x) \arctan (h(x)) d x \\
=-\int_{-a}^{a} f(x)\left(\ln \left(1+e^{g(x)}\right)\right) \arctan (h(x)) d x+2 \int_{0}^{a} f(x) g(x) \arctan (h(x)) d x \\
\int_{-a}^{a} f(x) \ln \left(1+e^{g(x)}\right) \arctan (h(x)) d x=\int_{0}^{a} f(x) g(x) \arctan (h(x))
\end{gathered}
$$

Solution 2 by Shivam Sharma-New Delhi-India

Let,

$$
I=\int_{-a}^{a} f(x) \ln \left(1+e^{g(x)}\right) \arctan (h(x)) d x
$$

As we know the following lemma:
If $f(x)$ is a continous function defined on $[-a, a]$, then,

$$
\int_{-a}^{a} f(x) d x=\left\{\begin{array}{c}
2 \int_{0}^{a} f(x) d x, \text { if } f(x) \text { is an even function } \\
0, \text { if } f(x) \text { is an odd function }
\end{array}\right.
$$

Using the above lemma, we get,

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{aligned}
& \Rightarrow \int_{-a}^{a} f(-x) \ln \left(1+e^{g(-x)}\right) \arctan (h(-x)) d x \\
& \Rightarrow-\int_{-a}^{a} f(x) \ln \left(1+e^{-g(x)}\right) \arctan (h(x)) d x
\end{aligned}
$$

$$
\Rightarrow-\int_{-a}^{a} f(x) \ln \left(1+e^{g(x)}\right) \arctan (h(x)) d x+\int_{-a}^{a} f(x) \ln \left(e^{g(x)}\right) \arctan (h(x)) d x
$$

$$
\Rightarrow-I+2 \int_{0}^{a} f(x) g(x) \arctan (h(x)) d x
$$

(OR)
$2 I=2 \int_{0}^{a} f(x) g(x) \arctan (h(x)) d x(0 R) I=\int_{0}^{a} f(x) g(x) \arctan (h(x)) d x$ (proved)

UP.092. Calculate:

$$
\lim _{n \rightarrow \infty} \sqrt[3]{n^{2}}(\sqrt[3(n+1)]{(n+1)!}-\sqrt[3 n]{n!})
$$

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania Solution by Soumitra Mandal-Chandar Nagore-India

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n!}{n^{n}}}=\frac{1}{\mathrm{e}} \\
=\lim _{n \rightarrow \infty}=\lim _{n \rightarrow \infty} \sqrt[3]{n^{2}}\left(\sqrt[3(n+1)]{\frac{\sqrt[3]{n}!}{n}} \cdot \frac{u_{n}-1}{\ln u_{n}} \cdot \ln u_{n}^{n}\right) \text { where } u_{n}=\frac{\sqrt[3(n+1)]{(n+1)!}}{\sqrt[3 n]{n!}} \text { for all } n \in \mathbb{N} \\
\therefore u_{n}=\frac{\sqrt[3(n+1)]{(n+1)!}}{\sqrt[3 n]{n!}}=\frac{\sqrt[3(n+1)]{(n+1)!}}{\sqrt[3]{n+1}} \cdot \frac{\sqrt[3]{n}}{\sqrt[3 n]{n!}} \cdot \sqrt[3]{1+\frac{1}{n}} \text { then } \lim _{n \rightarrow \infty} u_{n}=1 \\
\text { now, } u_{n} \rightarrow 1 \text { then } \frac{u_{n}-1}{\ln u_{n}} \rightarrow 1 \text { for all } n \rightarrow \infty
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
u_{n}^{n}=\left(\frac{\sqrt[3(n+1)]{(n+1)!}}{\sqrt[3 n]{n!}}\right)^{n}=\sqrt[3]{\frac{(n+1)!}{n!} \cdot \frac{1}{\sqrt[n+1]{(n+1)!}}}=\sqrt[3]{\frac{n}{n+1} \cdot \frac{n+1}{\sqrt[n+1]{(n+1)!}}} \\
\therefore \lim _{n \rightarrow \infty} u_{n}^{n}=\sqrt[3]{e} \text { and } \Omega_{n}=\frac{1}{\sqrt[3]{e}} \cdot 1 \cdot \ln \sqrt[3]{e}=\frac{1}{3 \sqrt[3]{e}}
\end{gathered}
$$

UP.093. Let $\left(a_{n}\right)_{n \geq 1},\left(b_{n}\right)_{n \geq 1}$ be positive real sequences such that there exists
$\lim _{n \rightarrow \infty} \frac{a_{n+1}}{n \cdot a_{n}}$ and $\lim _{n \rightarrow \infty}\left(b_{n}-u \cdot a_{n}\right)$. Find:
a. $\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{b_{n+1}}-\sqrt[n]{b_{n}}\right)$
b. $\lim _{n \rightarrow \infty}\left(\frac{(n+1)^{2}}{\sqrt[n+1]{b_{n+1}}}-\frac{n^{2}}{\sqrt[n]{b_{n}}}\right)$

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania
Solution by Soumitra Mandal-Chandar Nagore-India
a. Let $\lim _{n \rightarrow \infty}\left(b_{n}-u \cdot a_{n}\right)=v$ now let $\lim _{n \rightarrow \infty} a_{n}=x>0$ because $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{n \cdot a_{n}}=a>$ 0 then

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{n \cdot a_{n}}=a \Rightarrow \frac{x}{x} \cdot \frac{1}{\infty}=a \Rightarrow a=0, \text { which is false. Then } \lim _{n \rightarrow \infty} a_{n}=\infty
$$ now, $\lim _{n \rightarrow \infty}\left(b_{n}-u \cdot a_{n}\right)=v \Rightarrow \lim _{n \rightarrow \infty}\left(\frac{b_{n}}{a_{n}}-u\right)=v \lim _{n \rightarrow \infty} \frac{1}{a_{n}}=0$ then

$$
\Rightarrow \lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}}=u . \text { Now, } \lim _{n \rightarrow \infty} \frac{\sqrt[n]{b_{n}}}{n}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{b_{n}}{n^{n}}}
$$

$\stackrel{\text { Cauchy } D^{\prime} \text { Alembert }}{=} \lim _{n \rightarrow \infty}\left(\frac{b_{n+1}}{a_{n+1}} \cdot \frac{a_{n}}{b_{n}} \cdot \frac{a_{n+1}}{n \cdot a_{n}} \cdot \frac{1}{\left(1+\frac{1}{n}\right)^{n}} \cdot \frac{n}{n+1}\right)=\left(u \cdot \frac{1}{u} \cdot a \cdot \frac{1}{e}\right)=\frac{a}{e}$

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{b_{n+1}}-\sqrt[n]{b_{n}}\right)=\lim _{n \rightarrow \infty}\left(\frac{\sqrt[n]{b_{n}}}{n} \cdot \frac{u_{n}-1}{\ln u_{n}} \cdot \ln u_{n}^{n}\right) \text { where } u_{n}=\frac{\sqrt[n+1]{b_{n+1}}}{\sqrt[n]{b_{n}}} \\
u_{n}=\left(\frac{\sqrt[n+1]{b_{n+1}}}{\sqrt[n+1]{ }} \cdot \frac{n}{\sqrt[n]{b_{n}}} \cdot \frac{n+1}{n}\right) \Rightarrow \lim _{n \rightarrow \infty} u_{n}=1 \text { then } \lim _{n \rightarrow \infty} \frac{u_{n}-1}{\ln u_{n}}=1 \\
\therefore u_{n}^{n}=\left(\frac{\sqrt[n+1]{b_{n+1}}}{\sqrt[n]{b_{n}}}\right)^{n}=\left(\frac{b_{n+1}}{a_{n+1}} \cdot \frac{a_{n}}{b_{n}} \cdot \frac{a_{n+1}}{n \cdot a_{n}} \cdot \frac{n+1}{\left.\sqrt[n+1]{b_{n+1}} \cdot \frac{n}{n+1}\right)}\right. \\
\therefore \lim _{n \rightarrow \infty} u_{n}^{n}=\left(u \cdot \frac{1}{u} \cdot a \cdot \frac{e}{a}\right)=e, \text { then } \\
\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{b_{n+1}}-\sqrt[n]{b_{n}}\right)=\left(\frac{a}{e} \cdot 1 \cdot \ln e\right)=\frac{a}{e}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
b. $\lim _{n \rightarrow \infty} \frac{n}{\sqrt[n]{b_{n}}}=\frac{e}{a}$ then $\lim _{n \rightarrow \infty}\left(\frac{(n+1)^{2}}{\sqrt[n+1]{b_{n+1}}}-\frac{n^{2}}{\sqrt[n]{b_{n}}}\right)$
$=\lim _{n \rightarrow \infty}\left(\frac{n}{\sqrt[n]{b_{n}}} \cdot \frac{u_{n}-1}{\ln u_{n}} \cdot \ln u_{n}^{n}\right)$ where $u_{n}=\left(1+\frac{1}{n}\right)^{2} \cdot \frac{\sqrt[n]{b_{n}}}{\sqrt[n+1]{b_{n+1}}}$ for all $n \in \mathbb{N}$
$\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty}\left(\left(1+\frac{1}{n}\right)^{2} \cdot \frac{\sqrt[n]{b_{n}}}{n} \cdot \frac{n+1}{\sqrt[n+1]{b_{n+1}}} \cdot \frac{n}{n+1}\right)=1$ then $\lim _{n \rightarrow \infty} \frac{u_{n}-1}{\ln u_{n}}=1$
$\lim _{n \rightarrow \infty} u_{n}^{n}=\lim _{n \rightarrow \infty}\left(\left(1+\frac{1}{n}\right)^{2 n} \cdot \frac{b_{n}}{a_{n}} \cdot \frac{a_{n+1}}{b_{n+1}} \cdot \frac{n \cdot a_{n}}{a_{n+1}}\left(1+\frac{1}{n}\right) \cdot \frac{\sqrt[n+1]{b_{n+1}}}{n+1}\right)=\left(e^{2} \cdot u \cdot \frac{1}{u} \cdot \frac{1}{a} \cdot \frac{a}{e}\right)=$ e then

$$
\lim _{n \rightarrow \infty}\left(\frac{(n+1)^{2}}{\sqrt[n+1]{b_{n+1}}}-\frac{n^{2}}{\sqrt[n]{b_{n}}}\right)=\left(\frac{e}{a} \cdot 1 \cdot \ln e\right)=\frac{e}{a}
$$

UP.094. Let $\left(s_{n}\right)_{n \geq 1}, s_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}}$. Calculate:

$$
\lim _{n \rightarrow \infty}\left(s_{n} \cdot \sqrt[n+1]{(n+1)!}-\frac{\pi^{2}}{6} \cdot \sqrt[n]{n!}\right)
$$

Proposed by D.M. Bătinețu - Giurgiu, Neculai Stanciu - Romania

Solution 1 by Shivam Sharma-New Delhi-India

$$
\begin{gathered}
\text { Let, } L=\lim _{n \rightarrow \infty}\left(s_{n} \cdot \sqrt[n+1]{(n+1)!}-\frac{\pi^{2}}{6} \sqrt[n]{n!}\right) \\
\Rightarrow\left(\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{k^{2}}\right)\left(\lim _{n \rightarrow \infty} \sqrt[n+1]{(n+1)!}\right)-\frac{\pi^{2}}{6}\left(\lim _{n \rightarrow \infty} \sqrt[n]{n!}\right) \\
\Rightarrow\left[\left(\sum_{k=1}^{\infty} \frac{1}{k^{2}}\right) \cdot \lim _{n \rightarrow \infty} \sqrt[n+1]{(n+1)!}-\frac{\pi^{2}}{6} \cdot \lim _{n \rightarrow \infty} \sqrt[n]{n!}\right] \\
\Rightarrow \zeta(2) \cdot \lim _{n \rightarrow \infty} \sqrt[n+1]{(n+1)!}-\frac{\pi^{2}}{6} \cdot \lim _{n \rightarrow \infty} \sqrt[n]{n!} \Rightarrow \frac{\pi^{2}}{6} \cdot \lim _{n \rightarrow \infty} \sqrt[n+1]{(n+1)!}-\frac{\pi^{2}}{6} \cdot \lim _{n \rightarrow \infty} \sqrt[n]{n!} \\
\Rightarrow \frac{\pi^{2}}{6}\left[\lim _{n \rightarrow \infty}(\sqrt[n+1]{(n+1)!}-\sqrt[n]{n!})\right]
\end{gathered}
$$

As we know, the Stirling's formula, we get, $n!=\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}$. Using this, we get,

$$
\Rightarrow \frac{\pi^{2}}{6}\left[\lim _{n \rightarrow \infty}\left(\frac{n+1}{e}\right)(2 \pi(n+1))^{\frac{1}{n+1}}-\left(\frac{n}{e}\right)(2 \pi n)^{\frac{1}{n}}\right]
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Now, applying Cauchy D'Alembert, we get,

$$
\Rightarrow \frac{\pi^{2}}{6}\left[\frac{1}{e}\left(\lim _{n \rightarrow \infty}\left(\left(\frac{n+2}{n+1}\right)-\frac{(2 \pi(n+2))^{\frac{1}{n+2}}}{(2 \pi(n+1))^{\frac{1}{n+1}}}-\left(\frac{n+1}{n}\right) \cdot \frac{\left(2 \pi(n+1)^{\frac{1}{n+1}}\right)}{(2 \pi n)^{\frac{1}{n}}}\right)\right)\right]
$$

(or)
$L=\frac{\pi^{2}}{6 e}(1)$
(or)

$$
L=\frac{\pi^{2}}{6 e}
$$

(Answer)
Solution 2 by Soumitra Mandal-Chandar Nagore-India

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!}}{n}=\frac{1}{e} \text { then } \lim _{n \rightarrow \infty}(\sqrt[n+1]{(n+1)!}-\sqrt[n]{n!}) \\
=\lim _{n \rightarrow \infty}\left(\frac{\sqrt[n]{n!}}{n} \cdot \frac{u_{n}-1}{\ln u_{n}} \cdot \ln u_{n}^{n}\right) \text { where } u_{n}=\frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n]{n!}} \text { for all } n \in \mathbb{N} \\
\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty}\left(\frac{\sqrt[n+1]{(n+1)!}}{n+1} \cdot \frac{n}{\sqrt[n]{n!}} \cdot \frac{n+1}{n}\right)=1 \text { then } \frac{u_{n}-1}{\ln u_{n}} \rightarrow 1 \text { as } n \rightarrow \infty \\
\lim _{n \rightarrow \infty} u_{n}^{n}=\lim _{n \rightarrow \infty}\left(\frac{(n+1)!}{n!} \cdot \frac{1}{\sqrt[n+1]{(n+1)!}}\right)=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1} \cdot \frac{n+1}{\sqrt[n+1]{(n+1)!}}\right)=e \\
\lim _{n \rightarrow \infty}(\sqrt[n+1]{(n+1)!}-\sqrt[n]{n!})=\left(\frac{1}{e} \cdot 1 \cdot \ln e\right)=\frac{1}{e} \\
=\lim _{n \rightarrow \infty}\left(s_{n}-\frac{\pi^{2}}{6}\right) \sqrt[n+1]{(n+1)!}+\frac{\pi^{2}}{6} \lim _{n \rightarrow \infty}\left(\sqrt[n+1]{(n+1)!}-\frac{\pi^{2}}{6} \sqrt[n]{n!}\right) \\
=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n+1} \sqrt{(n+1)!}}{n+1} \cdot \frac{n+1}{n} \cdot n\left(s_{n}-\frac{\pi^{2}}{6}\right)+\frac{\pi^{2}}{6 e} \\
=\frac{1}{e} \lim _{n \rightarrow \infty}\left(s_{n}-\frac{\pi^{2}}{6}\right)+\frac{\pi^{2}}{6 e}=\frac{1}{e} \lim m_{n \rightarrow \infty} \frac{s_{n+1}-s_{n}}{\frac{1}{(n+1)}-\frac{1}{n}}+\frac{\pi^{2}}{6 e}=\frac{\pi^{2}}{6 e} \text { (Ans:) }
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

UP.095. Let $\left(s_{n}\right)_{n \geq 1}, s_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}}$ and let $\left(a_{n}\right)_{n \geq 1}$ be a positive real sequence such that $\lim _{n \rightarrow \infty}\left(s_{n} \cdot \sqrt[n+1]{a_{n+1}}-\frac{\pi^{2}}{6} \cdot \sqrt[n]{a_{n}}\right)$

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania Solution by Soumitra Mandal-Chandar Nagore-India

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{\sqrt[n]{a_{n}}}{n}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{a_{n}}{n^{n}}} \stackrel{\text { cauchy-D'Alembert }}{=} \lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{(n+1)^{n+1}} \cdot \frac{n^{n}}{a_{n}}\right)=\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{n \cdot a_{n}} \cdot \frac{1}{\left(1+\frac{1}{n}\right)^{n}} \cdot \frac{n}{n+1}\right)=\frac{a}{e} \\
\text { Let } u_{n}=\frac{\sqrt[n+1]{a_{n+1}}}{\sqrt[n]{a_{n}}} \text { for all } n \in \mathbb{N} \lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n+1} \cdot \frac{n}{\sqrt[n]{a_{n}}} \cdot \frac{n+1}{n}\right)=1
\end{gathered}
$$

$$
\text { Hence, } \frac{u_{n}-1}{\ln u_{n}} \rightarrow 1 \text { as } n \rightarrow \infty, \lim _{n \rightarrow \infty} u_{n}^{n}=\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{n a_{n}} \cdot \frac{n}{n+1} \cdot \frac{n+1}{\sqrt[n+1]{a_{n+1}}}\right)=\left(a \cdot 1 \cdot \frac{e}{a}\right)=e
$$

$$
\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{a_{n+1}}-\sqrt[n]{a_{n}}\right)=\lim _{n \rightarrow \infty}\left(\frac{\sqrt[n]{a_{n}}}{n} \cdot \frac{u_{n}-1}{\ln u_{n}} \cdot \ln u_{n}^{n}\right)=\left(\frac{a}{e} \cdot 1 \cdot \ln e\right)=\frac{a}{e}
$$

$$
\lim _{n \rightarrow \infty} n\left(s_{n}-\frac{\pi^{2}}{6}\right) \stackrel{\text { Caesaro-Stolz }}{\stackrel{m}{=}} \lim _{n \rightarrow \infty} \frac{s_{n+1}-s_{n}}{\frac{1}{n+1}-\frac{1}{n}}=-1
$$

$$
\lim _{n \rightarrow \infty}\left(s_{n} \sqrt[n+1]{a_{n+1}}-\frac{\pi^{2}}{6} \sqrt[n]{a_{n}}\right)=\lim _{n \rightarrow \infty}\left(s_{n}-\frac{\pi^{2}}{6}\right) \sqrt[n+1]{a_{n+1}}+\frac{\pi^{2}}{6} \lim _{n \rightarrow \infty}\left(\sqrt[n+1]{a_{n+1}}-\sqrt[n]{a_{n}}\right)
$$

$$
=\lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{a_{n+1}}}{n+1} \cdot \frac{n+1}{n} \cdot n\left(s_{n}-\frac{\pi^{2}}{6}\right)+\frac{a \pi^{2}}{6 e}=\frac{a\left(\pi^{2}-6\right)}{6 e}
$$

UP.096. Let $\left(s_{n}\right)_{n \geq 1}, s_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}}$. Calculate:

$$
\lim _{n \rightarrow \infty}\left(s_{n} \cdot \sqrt[n+1]{(2 n+1)!!}-\frac{\pi^{2}}{6} \cdot \sqrt[n]{(2 n-1)!!}\right)
$$

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania Solution by Shivam Sharma-New Delhi-India

Let,

$$
L=\lim _{n \rightarrow \infty}\left(s_{n} \sqrt[n+1]{(2 n+1)!!}-\frac{\pi^{2}}{6} \sqrt[n]{(2 n-1)!!}\right)
$$

As we know, $(2 n+1)!!=\frac{(2 n+1)!}{2^{n} n!},(2 n-1)!=\frac{(2 n)!}{2^{n} n!}$. Using this, we get,

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\Rightarrow \lim _{n \rightarrow \infty}\left[\left(\sum_{k=1}^{n} \frac{1}{k^{2}}\right)\left(\frac{(2 n+1)!}{2^{n} n!}\right)^{\frac{1}{n+1}}-\frac{\pi^{2}}{6}\left(\frac{(2 n)!}{2^{n} n!}\right)^{\frac{1}{n}}\right] \Rightarrow \frac{\pi^{2}}{6}\left[\lim _{n \rightarrow \infty}\left\{\left(\frac{(2 n+1)!}{2^{n} n!}\right)^{\frac{1}{n+1}}-\left(\frac{(2 n)!}{2^{n} n!}\right)\right\}\right]
$$

Now, applying Stirling's formula, we get,

$$
\Rightarrow \frac{\pi^{2}}{6}\left[\lim _{n \rightarrow \infty}\left\{\left(\frac{\left(\frac{2 n+1}{e}\right)^{2 n+1} \sqrt{2 \pi(2 n+1)}}{2^{n}\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}}\right)^{\frac{1}{n+1}}-\left(\frac{\left(\frac{2 n}{e}\right)^{2 n} \sqrt{4 \pi n}}{2^{n}\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}}\right)^{\frac{1}{n}}\right\}\right]
$$

Now, appling Cauchy D'Alembert, we get,

$$
L=\frac{\pi^{2}}{3 e}-\frac{2}{e}, \text { or } L=\frac{\pi^{2}-6}{3 e}
$$

UP.097. If $x, y, z, a, b, c>0$ then:

$$
\frac{(x+y)(y+z)(z+x)}{4 x y z} \geq\left(\frac{x+z}{y+z}+\frac{y+z}{x+z}\right)^{\frac{a}{a+b+c}}\left(\frac{y+x}{z+x}+\frac{z+x}{y+x}\right)^{\frac{b}{a+b+c}} \cdot\left(\frac{z+y}{x+y}+\frac{x+y}{z+y}\right)^{\frac{c}{a+b+c}} \geq 2
$$

(A refinement of Cesaro's inequality)
Proposed by Mihály Bencze Romania

Solution by proposer

$$
\text { We have: }\left\{\begin{array}{l}
\frac{(y+z)(z+x)}{4 y z} \geq \frac{x+z}{y+z} \Leftrightarrow(y-z)^{2} \geq 0 \\
\frac{(y+z)(z+x)}{4 x z} \geq \frac{y+z}{x+z} \Leftrightarrow(z-x)^{2} \geq 0
\end{array}\right.
$$

After addition we obtain: $\frac{(x+y)(y+z)(z+x)}{4 x y z} \geq \frac{x+z}{y+z}+\frac{y+z}{x+z} \geq 2$ and

$$
\left\{\begin{array}{l}
\left(\frac{(x+y)(y+z)(z+x)}{4 x y z}\right)^{a} \geq\left(\frac{x+z}{y+z}+\frac{y+z}{x+z}\right)^{a} \geq 2^{a} \\
\left(\frac{(x+y)(y+z)(z+x)}{4 x y z}\right)^{b} \geq\left(\frac{y+x}{z+x}+\frac{z+x}{y+x}\right)^{b} \geq 2^{b} \\
\left(\frac{(x+y)(y+z)(z+x)}{4 x y z}\right)^{c} \geq\left(\frac{z+y}{x+y}+\frac{x+y}{z+y}\right)^{c} \geq 2^{c}
\end{array}\right.
$$

After multiplication we obtain the desired inequalities.

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

UP.098. Let $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}, \boldsymbol{a}<b$ and $\boldsymbol{f}, \boldsymbol{g}: \mathbb{R} \rightarrow \mathbb{R}$ continuos functions such that

$$
f(x) f(a+b-x)=1, g(x)=g(a+b-x), x \in \mathbb{R}
$$

Show that

$$
\int_{a}^{b} \frac{g(x)}{1+f(x)} d x=\frac{1}{2} \cdot \int_{a}^{b} g(x) d x
$$

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania
Solution 1 by Soumitra Mandal-Chandar Nagore-India

$$
\begin{aligned}
& \text { Let } x=a+b-z \Rightarrow d x=-d z ; \text { when } x=a, z=b ; x=b, z=a \\
& \text { Let } I=\int_{a}^{b} \frac{g(x)}{1+f(x)} d x=\int_{a}^{b} \frac{g(a+b-z)(-d z)}{1+f(a+b-z)}=\int_{a}^{b} \frac{g(z) d z}{1+\frac{1}{f(z)}}=\int_{a}^{b} \frac{f(z) g(z)}{1+f(z)} d z \\
& =\int_{a}^{b} g(z) d z-\int_{a}^{b} \frac{g(z)}{1+f(z)} d z \Rightarrow 2 I=\int_{a}^{b} g(z) d z \Rightarrow I=\frac{1}{2} \int_{a}^{b} g(x) d x
\end{aligned}
$$

Hence proved

Solution 2 by Shivam Sharma-New Delhi-India

As we know, the following lemma,

If $f(x)$ is a continuos function defined on $[a, b]$; then,

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x
$$

Using this, we get,

$$
I=\int_{a}^{b} \frac{g(a+b-x)}{1+f(a+b-x)} d x
$$

Given: $f(x) f(a+b-x)=1 ; g(x)=g(a+b-x)$
Using this, and putting these values, we get,

$$
\Rightarrow \int_{a}^{b} \frac{f(x) g(x)}{1+f(x)} d x
$$

$$
2 I=\int_{a}^{b}\left(\frac{f(x)+1}{f(x)+1}\right) g(x) d x \text { or } I=\frac{1}{2} \int_{a}^{b} g(x) d x \text { (Proved) }
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 3 by Ravi Prakash-New Delhi-India

$$
\begin{gathered}
I=\int_{a}^{b} \frac{g(x)}{1+f(x)} d x=\int_{a}^{b} \frac{g(a+b-x)}{1+f(a+b-x)} d x=\int_{a}^{b} \frac{g(x)}{1+\frac{1}{f(x)}} d x \\
=\int_{a}^{b} \frac{g(x) f(x)}{1+f(x)} d x \quad \therefore 2 I=\int_{a}^{b} \frac{g(x)(1+f(x))}{1+f(x)} d x=\int_{a}^{b} g(x) d x \\
\\
\Rightarrow I=\frac{1}{2} \int_{a}^{b} g(x) d x
\end{gathered}
$$

UP.099. In an arbitrary triangle $A B C$ denote by l_{a}, m_{a}, h_{a} respectively the lengths of the internal angle-bisector, the median and the altitude corresponding to the side $a=B C$ of the triangle. Prove that:

$$
\begin{aligned}
& \text { a) } \frac{l_{a}^{2}}{h_{a}^{2}}+\frac{l_{b}^{2}}{h_{b}^{2}}+\frac{l_{c}^{2}}{h_{c}^{2}} \geq 2 \frac{l_{a}}{h_{a}} \cdot \frac{l_{b}}{h_{b}} \cdot \frac{l_{c}}{h_{c}}+1 \\
& \text { b) } \frac{m_{a}^{2}}{h_{a}^{2}}+\frac{m_{b}^{2}}{h_{b}^{2}}+\frac{m_{c}^{2}}{h_{c}^{2}} \leq 2 \frac{m_{a}}{h_{a}} \cdot \frac{m_{b}}{h_{b}} \cdot \frac{m_{c}}{h_{c}}+1
\end{aligned}
$$

c) explain why each of a) and b) are equivalent to the fundamental inequality of the

triangle.

Proposed by Vasile Jiglău - Romania

Solution by Soumava Chakraborty-Kolkata-India

Proof of (a) $l_{a}^{2}=\frac{4 b^{2} c^{2}}{(b+c)^{2}} \cdot \frac{s(s-a)}{b c}=\frac{b c(b+c+a)(b+c-a)}{(b+c)^{2}}=\frac{b c\left\{(b+c)^{2}-a^{2}\right\}}{(b+c)^{2}}=b c-\frac{a^{2} b c}{(b+c)^{2}}$

$$
\begin{aligned}
\therefore \frac{l_{a}^{2}}{h_{a}^{2}}=b c \cdot \frac{4 R^{2}}{b^{2} c^{2}} & -\frac{a^{4} b c}{4 \Delta^{2}(b+c)^{2}}=4 R^{2} \cdot \frac{1}{b c}-\frac{4 R r s}{4 r^{2} S^{2}} \cdot \frac{a^{3}}{(b+c)^{2}}= \\
& \stackrel{(1)}{=} 4 R^{2}\left(\frac{1}{b c}\right)-\frac{R}{r s} \cdot \frac{a^{3}}{(b+c)^{2}}
\end{aligned}
$$

Similarly, $\frac{l_{b}^{2}}{h_{b}^{2}} \stackrel{(2)}{=} 4 R^{2}\left(\frac{1}{c a}\right)-\frac{R}{r s} \cdot \frac{b^{3}}{(c+a)^{2}} \& \frac{l_{c}^{2}}{h_{c}^{2}} \stackrel{(3)}{=} 4 R^{2}\left(\frac{1}{a b}\right)-\frac{R}{r s} \cdot \frac{c^{3}}{(a+b)^{2}}$

$$
\text { (1) }+(2)+\text { (3) } \Rightarrow \sum \frac{l_{a}^{2}}{h_{a}^{2}}=\frac{4 R^{2}}{4 R r s}(2 S)+\frac{R}{r s} \sum \frac{(2 s-a-2 s)^{3}}{(2 s-a)^{2}}=
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
=\frac{2 R}{r}+\frac{R}{r s} \sum \frac{(2 s-a)^{3}-8 s^{3}-3(2 s-a)^{2} \cdot 2 S+3(2 s-a) 4 S^{2}}{(2 s-a)^{2}}= \\
=\frac{2 R}{r}+\frac{R}{r s} \sum(2 s-a)-\frac{3 R}{r s}(2 S)(3)+\frac{12 R S^{2}}{r s} \sum \frac{1}{b+c}-\frac{8 R s^{3}}{r s} \sum \frac{1}{(b+c)^{2}}=
\end{gathered}
$$

$$
\stackrel{(4)}{=} \frac{2 R}{r}+\frac{4 R S}{r s}-\frac{18 R}{r}+\frac{12 R S}{r} \sum \frac{1}{b+c}-\frac{8 R S^{2}}{r} \sum \frac{1}{(b+c)^{2}}
$$

Now, $(a+b)(b+c)(c+a)=2 a b c+\sum a b(2 S-c)=$

$$
=2 s\left(s^{2}+4 R r+r^{2}\right)-4 R r s \stackrel{(5)}{=} 2 s\left(s^{2}+2 R r+r^{2}\right)
$$

$$
\text { (5) } \Rightarrow \frac{2 R S}{r} \sum \frac{1}{b+c}=\frac{12 R S}{r} \cdot \frac{\sum(c+a)(a+b)}{2 s\left(s^{2}+2 R r+r^{2}\right)}=\frac{12 R S\left[\left(\sum a^{2}+2 \sum a b\right)+\sum a b\right]}{2 s\left(s^{2}+2 R r+r^{2}\right) r} \stackrel{(i)}{=} \frac{16 R\left(5 s^{2}+4 R r+r^{2}\right)}{r\left(s^{2}+2 R r+r^{2}\right)}
$$

Now, $\sum(c+a)^{2}(a+b)^{2}=\sum\left(a^{2}+\sum a b\right)^{2}=\sum\left\{a^{4}+\left(\sum a b\right)^{2}+2\left(\sum a b\right) a^{2}\right\}=$

$$
\begin{aligned}
& =\sum a^{4}+3\left(\sum a b\right)^{2}+2\left(\sum a b\right)\left(\sum a^{2}\right)=\left(\sum a^{2}\right)^{2}-2\left\{\left(\sum a b\right)^{2}-2 a b c(2 s)\right\}+ \\
& +3\left(\sum a b\right)^{2}+2\left(\sum a b\right)\left(\sum a^{2}\right)=\left(\sum a^{2}\right)^{2}+\left(\sum a b\right)^{2}+2\left(\sum a b\right)\left(\sum a^{2}\right)+ \\
& +32 R r s^{2}=\left(\sum a^{2}+\sum a b\right)^{2}+32 R r s^{2}=\left(3 s^{2}-4 R r-r^{2}\right)^{2}+32 R r s^{2}= \\
& =9 s^{4}-6 s^{2}\left(4 R r+r^{2}\right)+32 R r s^{2}+r^{2}(4 R+r)^{2} \stackrel{(6)}{=} 9 s^{4}+r^{2}(4 R+r)^{2}+s^{2}\left(8 R r-6 r^{2}\right) \\
& \text { (5), (6) } \Rightarrow \frac{-8 R s^{2}}{r} \sum \frac{1}{(b+c)^{2}}=\frac{\left[9 s^{4}+r^{2}(4 R+r)^{2}+s^{2}\left(8 R r-6 r^{2}\right)\right]}{r \cdot 4 s^{2}\left(s^{2}+2 R r+r^{2}\right)^{2}} \stackrel{(i i)}{=} \frac{-2 R\left[9 s^{4}+r^{2}(4 R+r)^{2}+s^{2}\left(8 R r-6 r^{2}\right)\right]}{r\left(s^{2}+2 R r+r^{2}\right)^{2}}
\end{aligned}
$$

(i),(ii), (4) $\Rightarrow \sum \frac{l_{a}^{2}}{h_{a}^{2}}=\frac{-12 R}{r}+\frac{6 R\left(5 s^{2}+4 R r+r^{2}\right)}{r\left(s^{2}+2 R r+r^{2}\right)}-\frac{2 R\left[9 s^{4}+r^{2}(4 R+r)^{2}+s^{2}\left(8 R r-6 r^{2}\right)\right]}{r\left(s^{2}+2 R r+r^{2}\right)^{2}}$

$$
=\frac{-12 R\left(s^{2}+2 R r+r^{2}\right)^{2}+6 R\left(5 s^{2}+4 R r+r^{2}\right)\left(s^{2}+2 R r+r^{2}\right)}{r\left(s^{2}+2 R r+r^{2}\right)^{2}}-
$$

$$
-\frac{2 R\left[9 s^{4}+r^{2}(4 R+r)^{2}+s^{2}\left(8 R r-6 r^{2}\right)\right]}{r\left(s^{2}+2 R r+r^{2}\right)^{2}} \stackrel{(7)}{=} \frac{R S^{2}\left(20 R r+24 r^{2}\right)-R r^{2}\left(32 R^{2}+28 R r+8 r^{2}\right)}{r\left(s^{2}+2 R r+r^{2}\right)^{2}}
$$

Now, $\frac{2 l_{a} l_{b} l_{c}}{h_{a} h_{b} h_{c}}+1 \stackrel{b y(5)}{=} \frac{2 \cdot 8 R^{3}}{16 R^{2} r^{2} s^{2}} \cdot \frac{8 \cdot 16 R^{2} r^{2} s^{2}\left(\frac{s}{4 R}\right)}{2 s\left(s^{2}+2 R r+r^{2}\right)}+1=\frac{16 R^{2}}{s^{2}+2 R r+r^{2}}+1 \stackrel{(8)}{=} \frac{16 R^{2}+s^{2}+2 R r+r^{2}}{s^{2}+2 R r+r^{2}}$

$$
\because R S^{2}\left(20 R r+24 r^{2}\right)-R r^{2}\left(32 R^{2}+28 R r+8 r^{2}\right) \stackrel{\text { Gerretsen }}{\geq}
$$

$$
\geq R r^{2}\left[(20 R+24 r)(16 R-5 r)-\left(32 R^{2}+28 R r+8 r^{2}\right)\right]=
$$

$$
=R r^{2}\left(288 R^{2}+256 R r-128 r^{2}\right)=R r^{2}\left\{288 R^{2}+192 R r+64 r(R-2 r)\right\}>0
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$\therefore(7),(8) \Rightarrow$ given inequality is equivalent to: $R(20 R+24 r) s^{2}-R r\left(32 R^{2}+28 R r+8 r^{2}\right)$

$$
\begin{gathered}
\geq\left(s^{2}+2 R r+r^{2}\right)\left(s^{2}+16 R^{2}+2 R r+r^{2}\right) \Leftrightarrow s^{2}\left(4 R^{2}+20 R r-2 r^{2}\right) \stackrel{(9)}{\geq} \\
\geq s^{4}+64 R^{3} r+48 R^{2} r^{2}+12 R r^{3}+r^{4}
\end{gathered}
$$

Now, the fundamental triangle inequality (Rouche) $\Rightarrow s^{2} \geq m-n \Rightarrow s^{2}-m+n \stackrel{(a)}{\geq} 0$ \&

$$
\begin{gathered}
s^{2} \leq m+n \Rightarrow s^{2}-m-n \stackrel{(b)}{\leq} 0, \text { where } m=2 R^{2}+10 R r-r^{2} \& \\
n=2(R-2 r) \sqrt{R^{2}-2 R r} \\
+\left(2 R^{2}+10 R r-r^{2}\right)^{2}-4(R-2 r)^{2}\left(R^{2}-2 R r\right) \leq 0 \Rightarrow s^{4}+64 R^{3} r+48 R^{2} r^{2}+12 R r^{3}+ \\
+r^{4} \stackrel{(c)}{\leq} s^{2}\left(4 R^{2}+20 R r-2 r^{2}\right) \Rightarrow(9) \text { is true (proved) }
\end{gathered}
$$

\because (c) is analogous with the fundamental triangle inequality $\& \because$ given inequality is equivalent to (c), hence, given inequality is equivalent to the fundamental triangle inequality

$$
\begin{aligned}
& \text { Proof of (b) } m_{a}^{2} m_{b}^{2} m_{c}^{2}=\frac{\left(2 b^{2}+2 c^{2}-a^{2}\right)\left(2 c^{2}+2 a^{2}-b^{2}\right)\left(2 a^{2}+2 b^{2}-c^{2}\right)}{64} \stackrel{(1)}{=} \\
& =\frac{1}{64}\left\{-4 \sum a^{6}+6\left(\sum s^{4} b^{2}+\sum a^{2} b^{2}\right)+3 a^{2} b^{2} c^{2}\right\} \text {. Now, } \\
& \sum a^{6}=\left(\sum a^{2}\right)^{3}-3\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)\left(c^{2}+a^{2}\right)= \\
& =\left(\sum a^{2}\right)^{3}-3\left(\sum a^{2}-c^{2}\right)\left(\sum a^{2}-a^{2}\right)\left(\sum a^{2}-b^{2}\right)= \\
& =\left(\sum a^{2}\right)^{3}-3\left\{\left(\sum a^{2}\right)^{3}-\left(\sum a^{2}\right)^{3}+\left(\sum a^{2}\right)\left(\sum a^{2} b^{2}\right)-a^{2} b^{2} c^{2}\right\} \\
& \stackrel{(2)}{=}\left(\sum a^{2}\right)^{3}-3\left(\sum a^{2}\right)\left(\sum a^{2} b^{2}\right)+3 a^{2} b^{2} c^{2} \text {. Also, } \sum a^{4} b^{2}+\sum a^{2} b^{4}=\sum a^{2} b^{2}\left(\sum a^{2}-c^{2}\right)= \\
& \stackrel{(3)}{=}\left(\sum a^{2}\right)\left(\sum a^{2} b^{2}\right)-3 a^{2} b^{2} c^{2} \\
& \text { (1), (2), (3) } \Rightarrow m_{a}^{2} m_{b}^{2} m_{c}^{2}=\frac{1}{64}\left\{\begin{array}{r}
-4\left(\sum a^{2}\right)^{3}+12\left(\sum a^{2}\right)\left(\sum a^{2} b^{2}\right)-12 a^{2} b^{2} c^{2}+ \\
+6\left(\sum a^{2}\right)\left(\sum a^{2} b^{2}\right)-18 a^{2} b^{2} c^{2}+3 a^{2} b^{2} c^{2}
\end{array}\right\} \\
& =\frac{1}{64}\left\{-4\left(\sum a^{2}\right)^{3}+18\left(\sum a^{2}\right)\left(\sum a^{2} b^{2}\right)-27 a^{2} b^{2} c^{2}\right\}=
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\left.\begin{array}{c}
=\frac{1}{64}\left[\begin{array}{c}
-32\left(s^{2}-4 R r-r^{2}\right)^{3}+18 \cdot 2\left(s^{2}-4 R r-r^{2}\right) \cdot \\
\left\{\left(s^{2}+4 R r+r^{2}\right\}-2 a b c(2 s)-432 R^{2} r^{2} s^{2}\right.
\end{array}\right]= \\
\stackrel{(4)}{=} \frac{1}{16}\left\{s^{6}-s^{4}\left(12 R r-33 r^{2}\right)-s^{2}\left(60 R^{2} r^{2}+120 R r^{3}+33 r^{4}\right)-\right. \\
-64 R^{3} r^{3}-48 R^{2} r^{4}-12 R r^{5}-r^{6}
\end{array}\right\},
$$

Now, $4 \sum a^{2} b^{2}-\sum a^{4}=6 \sum a^{2} b^{2}-\left(\sum a^{2}\right)^{2}=6\left\{\left(\sum a b\right)^{2}-2 a b c(2 s)\right\}-\left(\sum a^{2}\right)^{2}$

$$
\begin{aligned}
= & 4\left\{\left(s^{2}+4 R r+r^{2}\right)^{2}-\left(s^{2}-4 R r-r^{2}\right)^{2}\right\}+2\left(s^{2}+4 R r+r^{2}\right)^{2}-96 R r s^{2}= \\
= & 4\left(2 s^{2}\right)\left(8 R r+2 r^{2}\right)+2\left(s^{4}+r^{2}(4 R+r)^{2}+2 s^{2}\left(4 R r+r^{2}\right)\right)-96 R r s^{2}
\end{aligned}
$$

$$
\stackrel{(5)}{=} 2 s^{4}-s^{2}\left(16 R r-20 r^{2}\right)+2 r^{2}(4 R+r)^{2}
$$

Now, $\sum \frac{m_{a}^{2}}{h_{a}^{2}}-1=\sum \frac{2 b^{2}+2 c^{2}-a^{2}}{4} \cdot \frac{a^{2}}{4 \Delta^{2}}-1=\frac{4 \sum a^{2} b^{2}-\sum a^{4}}{16 \Delta^{2}}-1=$

$$
\begin{gathered}
=\frac{s^{4}-s^{2}\left(8 R r-10 r^{2}\right)+r^{2}(4 R+r)^{2}-8 r^{2} s^{2}}{8 \Delta^{2}}(\mathrm{by}(5)) \\
=\frac{s^{4}+r^{2}(4 R+r)^{2}-s^{2}\left(8 R r-2 r^{2}\right)}{8 \Delta^{2}} \\
\therefore\left(\sum \frac{m_{a}^{2}}{h_{a}^{2}}-1\right)^{2}
\end{gathered}
$$

$$
\stackrel{(6)}{=} \frac{1}{64 \Delta^{2}}\left[\begin{array}{c}
s^{8}-s^{6}\left(16 R r-4 r^{2}\right)+s^{4}\left(96 R^{2} r^{2}+16 R r^{3}+6 r^{4}\right)- \\
-s^{2}\left(256 R^{3} r^{3}+64 R^{2} r^{4}-16 R r^{5}-4 r^{6}\right)+ \\
+256 R^{4} r^{4}+256 R^{3} r^{5}+96 R^{2} r^{6}+16 R r^{7}+r^{8}
\end{array}\right]
$$

Also, $\left(\frac{2 m_{a} m_{b} m_{c}}{h_{a} h_{b} h_{c}}\right)^{2}=\left(\frac{28 R^{3}}{16 R^{2} r^{2} s^{2}}\right)^{2} \cdot m_{a}^{2} m_{b}^{2} m_{c}^{2}$

$$
\stackrel{(7)}{=} \frac{R^{2}}{16 \Delta^{4}}\left\{\begin{array}{c}
s^{6}-s^{4}\left(12 R r-33 r^{2}\right)-s^{2}\left(60 R^{2} r^{2}+120 R r^{3}+33 r^{4}\right)- \\
-64 R^{3} r^{3}-48 R^{2} r^{4}-12 R r^{5}-r^{6}
\end{array}\right\} \text { (by (4)) }
$$

(6), (7) \Rightarrow given inequality is equivalent to:

$$
\begin{gathered}
s^{8}-s^{6}\left(16 R r-4 r^{2}\right)+s^{4}\left(96 R^{2} r^{2}+16 R r^{3}+6 r^{4}\right)- \\
-s^{2}\left(256 R^{3} r^{3}+64 R^{2} r^{4}-16 R r^{5}-4 r^{6}\right)+256 R^{4} r^{4}+256 R^{3} r^{5}+96 R^{2} r^{6}+ \\
+16 R r^{7}+r^{8} \leq 4 R^{2}\left\{\begin{array}{c}
s^{6}-s^{4}\left(12 R r-33 r^{2}\right)-s^{2}\left(60 R^{2} r^{2}+120 R r^{3}+33 r^{4}\right)- \\
-64 R^{3} r^{3}-48 R^{2} r^{4}-12 R r^{5}-r^{6}
\end{array}\right\} \\
\Leftrightarrow s^{8}-s^{6}\left(4 R^{2}+16 R r-4 r^{2}\right)+s^{4}\left(48 R^{3} r-36 R^{2} r^{2}-16 R r^{3}+6 r^{4}\right)+ \\
+s^{2}\left(240 R^{4} r^{2}+224 R^{3} r^{3}+68 R^{2} r^{4}+16 R r^{5}+4 r^{6}\right)+256 R^{5} r^{3}+448 R^{4} r^{4}+ \\
+304 R^{3} r^{5}+100 R^{2} r^{6}+16 R r^{7}+r^{8} \leq 0 \Leftrightarrow
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
& \Leftrightarrow\left\{s^{4}-\left(4 R^{2}+20 R r-2 r^{2}\right) s^{2}+64 R^{3} r+48 R^{2} r^{2}+12 R r^{3}+r^{4}\right\} \\
& \quad\left\{s^{4}+s^{2}\left(4 R r+2 r^{2}\right)+4 R^{2} r^{2}+4 R r^{3}+r^{4}\right\} \leq 0 \Leftrightarrow \\
& \Leftrightarrow s^{4}+64 R^{3} r+48 R^{2} r^{2}+12 R r^{3}+r^{4} \leq s^{2}\left(4 R^{2}+20 R r-2 r^{2}\right)
\end{aligned}
$$

But, the above is inequality (c) proved in the proof of (a) earlier.
\Rightarrow given inequality is true (Proved)
\because given inequality reduces to inequality (c) \& (c) is analogous to the fundamental inequality of the triangle, hence, this given inequality is equivalent to the fundamental ineqaulity of the triangle (Done).

UP.100. In $\triangle A B C ; m_{a}, m_{b}, m_{c}$ - median's length. Prove that:

$$
3\left(a^{2}+b^{2}+c^{2}\right)<4\left(a m_{c}+b m_{a}+c m_{b}\right)
$$

Proposed by Daniel Sitaru - Romania
Solution by proposer
Let G be the centroid of $\triangle A B C$.

$$
\begin{gather*}
A G=\frac{2}{3} m_{a} ; B G=\frac{2}{3} m_{b} \\
1>\cos (\widehat{G B A})=\frac{G B^{2}+A B^{2}-G A^{2}}{2 G B \cdot A B}=\frac{\left(\frac{2}{3} m_{b}\right)^{2}+c^{2}-\left(\frac{2}{3} m_{a}\right)^{2}}{2 \cdot \frac{2}{3} m_{b} \cdot c}= \\
=\frac{9 c^{2}+4 m_{b}^{2}-4 m_{a}^{2}}{12 c m_{b}}=\frac{9 c^{2}+2 a^{2}+2 c^{2}-b^{2}-2 b^{2}-2 c^{2}+a^{2}}{12 c m_{b}}= \\
=\frac{9 c^{2}+3 a^{2}-3 b^{2}}{12 c m_{b}}=\frac{3 c^{2}+a^{2}-b^{2}}{4 c m_{b}} \\
3 c^{2}+a^{2}-b^{2}<4 c m_{b} \quad \text { (1) } \tag{1}
\end{gather*}
$$

Analogous:

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gather*}
3 a^{2}+b^{2}-c^{2}<4 a m_{c} \\
3 a^{2}+b^{2}-c^{2}<4 a m_{c} \tag{2}\\
3 b^{2}+c^{2}-a^{2}<4 b m_{a} \tag{3}
\end{gather*}
$$

By adding (1); (2); (3): $3\left(a^{2}+b^{2}+c^{2}\right)<4\left(a m_{c}+b m_{a}+c m_{b}\right)$

UP.101. Prove that if $a, b, c \in(1, \infty)$ then:

$$
3 \sqrt{2}+\int_{1}^{a} x \sin \frac{\pi}{3 x} d x+\int_{1}^{b} x \sin \frac{\pi}{3 x} d x+\int_{1}^{c} x \sin \frac{\pi}{3 x} d x>\sqrt{3+a^{2}+b^{2}+c^{2}}
$$

Proposed by Daniel Sitaru - Romania

Solution by Rovsen Pirguliyev-Sumgait-Azerbaidian

$$
\text { Lemma: if } x>q, \text { then prove: } \sin \frac{\pi}{x}>\frac{3}{\sqrt{x^{2}+9}}
$$

Proof: $x>2 \Rightarrow \frac{\pi}{x}<\frac{\pi}{2} \Rightarrow \boldsymbol{\operatorname { t a n }} \frac{\pi}{x}>\frac{\pi}{x}$, we have $\frac{\pi}{x}>\frac{3}{x} \Rightarrow \tan \frac{\pi}{x}>\frac{3}{x}\left({ }^{*}\right)$

$$
\cos x=\sqrt{\frac{1}{1+\tan ^{2} x}}<\sqrt{\frac{1}{1+\frac{\pi^{2}}{x^{2}}}} \stackrel{(x)}{<} \frac{x}{\sqrt{x^{2}+9}} \Rightarrow \sin \frac{\pi}{x}>\frac{3}{\sqrt{x^{2}+9}}
$$

it is known that: if $x>q$, then $\sqrt{x^{2}+9} \sin \frac{\pi}{x}>3 \Rightarrow x \rightarrow 3 x$, we have: $\sin \frac{\pi}{3 x}>\frac{1}{\sqrt{x^{2}+1}}$

$$
\begin{gathered}
x \sin \frac{\pi}{3 x}>x \cdot \frac{1}{\sqrt{x^{2}+1}}=\frac{x}{\sqrt{x^{2}+1}}(*) \\
3 \sqrt{2}+\int_{1}^{a} x \sin \frac{\pi}{3 x} d x+\int_{1}^{b} x \sin \frac{\pi}{3 x} d x+\int_{1}^{c} x \sin \frac{\pi}{3 x} \stackrel{(*)}{>} \\
>3 \sqrt{2}+\int_{1}^{a} \frac{x}{\sqrt{x^{2}+1}} d x+\int_{1}^{b} \frac{x}{\sqrt{x^{2}+1}} d x+\int_{1}^{c} \frac{x}{\sqrt{x^{2}+1}} d x= \\
=3 \sqrt{2}+\left.\sqrt{x^{2}+1}\right|_{1} ^{a}+\left.\sqrt{x^{2}+1}\right|_{1} ^{b}+\left.\sqrt{x^{2}+1}\right|_{1} ^{c}= \\
=3 \sqrt{2}+\sqrt{a^{2}+1}-\sqrt{2}+\sqrt{b^{2}+1}-\sqrt{2}+\sqrt{c^{2}+1}-\sqrt{2}= \\
=\sqrt{a^{2}+1}+\sqrt{b^{2}+1}+\sqrt{c^{2}+1}>\sqrt{3+a^{2}+b^{2}+c^{2}}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

UP. 102. Solve for real numbers:

$$
n^{n\left(x_{1}^{2}-x_{2}\right)}+n^{n\left(x_{2}^{2}-x_{3}\right)}+\cdots+n^{n\left(x_{n-1}^{2}-x_{n}\right)}+n^{n\left(x_{n}^{2}-x_{1}\right)}=\frac{n}{\sqrt[4]{n^{n}}}
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Hoang Le Nhat Tung-Hanoi-Vietnam

By AM-GM

$$
\begin{gathered}
n^{n\left(x_{1}^{2}-x_{2}\right)}+n^{n\left(x_{2}^{2}-x_{3}\right)}+\cdots+n^{n\left(x_{n}^{2}-x_{1}\right)} \geq n^{n} \sqrt{\left(n^{n}\right)^{x_{1}^{2}-x_{2}+x_{2}^{2}-x_{3}+\cdots+x_{n}^{2}-x_{1}}} \\
=n \sqrt[n]{\left(n^{n}\right)^{\left(x_{1}^{2}-x_{1}\right)+\left(x_{2}^{2}-x_{2}\right)+\cdots+\left(x_{n}^{2}-x_{n}\right)}}=n \sqrt[n]{\left(n^{n}\right)^{\left(x_{1}-\frac{1}{2}\right)^{2}+\left(x_{1}-\frac{1}{2}\right)^{2}+\cdots+\left(x_{n}-\frac{1}{2}\right)^{2}-\left(\frac{1}{4}+\cdots+\frac{1}{4}\right)}} \\
\geq n \sqrt[n]{\left(n^{n}\right)^{-\frac{1}{4} n}}=n \sqrt[n]{\left(n^{n}\right)^{-\frac{n}{4}}}=\frac{n}{\sqrt[4]{n^{n}}} \Rightarrow n^{n\left(x_{1}^{2}-x_{2}\right)+\cdots+n^{n\left(x_{n}^{2}-x_{1}\right)} \geq \frac{n}{\sqrt[4]{n^{n}}}} \\
\Rightarrow x_{1}=x_{2}=\cdots=x_{n}=\frac{1}{2}
\end{gathered}
$$

Solution 2 by M yagmarsuren Yadamsuren-Darkhan-Mongolia

$$
\begin{gathered}
n^{n\left(x_{1}^{2}-x_{2}\right)}+n^{n\left(x_{2}^{2}-x_{3}\right)}+\cdots+n^{n\left(x_{n-1}^{2}-x_{n}\right)}+n^{n\left(x_{n}^{2}-x_{1}\right)}= \\
=\frac{n}{\sqrt[4]{n^{n}}} \Leftrightarrow x \in \mathbb{R}: n^{n\left(x_{i}^{2}-x_{i}\right)}>0(*) \\
(*) \Rightarrow n^{n\left(x_{1}^{2}-x_{2}\right)}+\cdots+n^{n\left(x_{n}^{2}-x_{1}\right)} \stackrel{A M \geq G M}{\geq} n \cdot \sqrt[n]{\left(n^{\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)-\left(x_{1}+x_{2}+\cdots+x_{n}\right)}\right)^{n}}= \\
=n \cdot n^{\left(x_{1}^{2}-x_{1}+\frac{1}{4}\right)+\cdots+\left(x_{n}^{2}-x_{n}+\frac{1}{4}\right)-\frac{n}{4}}=\frac{n}{\sqrt[4]{n^{n}}} \cdot n^{\left(x_{1}-\frac{1}{2}\right)^{2}+\cdots+\left(x_{n}-\frac{1}{2}\right)^{2}}=\frac{n}{\sqrt[4]{n^{n}}} \Rightarrow \\
\Rightarrow n^{\Sigma\left(x_{i}-\frac{1}{2}\right)^{2}}=n^{\sum_{i=1}^{n}\left(x_{i}-\frac{1}{2}\right)^{2}}=1=n^{\circ} \\
\sum\left(x_{i}-\frac{1}{2}\right)^{2}=0 \Rightarrow x_{1}=x_{2}=\cdots=x_{n}=\frac{1}{2}
\end{gathered}
$$

Solution 3 by Ravi Prakash-New Delhi-India
$\frac{n}{n^{\frac{n}{4}}}=n^{n\left(x_{1}^{2}-x_{2}\right)}+n^{n\left(x_{2}^{2}-x_{3}\right)}+\cdots+n^{n\left(x_{n}^{2}-x_{1}\right)} \geq n\left[n^{n\left(x_{1}^{2}-x_{2}+x_{2}^{2}-x_{3}+\cdots+x_{n}^{2}-x_{1}\right)}\right]^{\frac{1}{n}} \Rightarrow \frac{1}{n^{\frac{n}{4}}} \geq n^{5}$
where $s=\left(x_{1}^{2}-x_{1}\right)+\left(x_{2}^{2}-x_{2}\right)+\cdots+\left(x_{n}^{2}-x_{n}\right)$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
=\left(x_{1}-\frac{1}{2}\right)^{2}+\left(x_{2}-\frac{1}{2}\right)^{2}+\cdots+\left(x_{n}-\frac{1}{2}\right)^{2}-\frac{n}{4}=T-\frac{n}{4} \geq-\frac{n}{4} \\
\therefore \frac{1}{n^{\frac{n}{4}}} \geq n^{T-\frac{n}{4}} \geq n^{-\frac{n}{4}} . \text { Equality holds when } T=0 . \Leftrightarrow x_{1}=x_{2}=\cdots=x_{n}=\frac{1}{2}
\end{gathered}
$$

UP.103. Prove that in any triangle $A B C$ the following relationship holds:

$$
|\cos A|+|\cos B|+|\cos C| \leq \sum\left(\sqrt{|\cos A \cos B|}+\sqrt{\left|\cos \frac{C}{2} \sin \frac{B-A}{2}\right|}\right)
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \quad \sum|\cos A| \stackrel{(1)}{\leq} \sum\left(\sqrt{|\cos A \cos B|}+\sqrt{\left|\cos \frac{C}{2} \sin \frac{B-A}{2}\right|}\right) \\
& \text { (1) } \Leftrightarrow \sum \frac{|\cos A|+|\cos B|}{2} \leq \sum \sqrt{|\cos A \cos B|}+\frac{1}{\sqrt{2}} \sum \sqrt{|\cos A-\cos B|}
\end{aligned}
$$

Let $\cos A=x, \cos B=y ;-1<x, y<1$. We shall prove that $\forall x, y \in(-1,1)$,

$$
\begin{gathered}
\frac{|x|+|y|}{2} \stackrel{(a)}{\leq} \sqrt{|x y|}+\frac{1}{\sqrt{2}} \sqrt{|x-y|} \Leftrightarrow|x|+|y|-2 \sqrt{|x y|} \stackrel{(b)}{\leq} \sqrt{2|x-y|} \\
\because|x|+|y|-2 \sqrt{|x y|}=(\sqrt{|x|}-\sqrt{|y|})^{2} \geq 0 \\
\begin{array}{r}
\therefore(b) \Leftrightarrow x^{2}+y^{2}+4|x y|+2|x y|-4|x| \sqrt{|x y|}-4|y| \sqrt{|x y|} \leq 2|x-y| \text { (upon } \\
\text { squaring) } \Leftrightarrow 4 \sqrt{|x y|}(|x|+|y|)+2|x-y| \stackrel{(c)}{\geq} x^{2}+y^{2}+6|x y| \\
A-G \Rightarrow \text { LHS of (c) } \geq 4 \sqrt{|x y|} \cdot 2 \sqrt{|x y|}+2|x-y|=8|x y|+2|x-y| \stackrel{(?)}{\geq} x^{2}+y^{2}+6|x y| \\
\Leftrightarrow 2|x-y| \underset{(d)}{?}(|x|-|y|)^{2}
\end{array}
\end{gathered}
$$

Now, $(|x|-|y|)^{2} \leq(|x-y|)^{2} \Leftrightarrow x^{2}+y^{2}-2|x y| \leq x^{2}+y^{2}-2 x y \Leftrightarrow$
$\Leftrightarrow|x y| \geq x y \rightarrow$ true $\therefore(|x|-|y|)^{2} \leq(|x-y|)^{2} \stackrel{?}{\leq} 2|x-y| \Leftrightarrow$
$\Leftrightarrow(|x-y|)(|x-y|-2) \underset{(e)}{\stackrel{?}{e}} 0 \because-1<\cos A<1 \&-1<-\cos B<1$
$\therefore-2<\cos \boldsymbol{A}-\cos \boldsymbol{B}<2$ (adding the above two) $\Rightarrow-2<x-y<2 \Rightarrow|\boldsymbol{x}-\boldsymbol{y}|<2 \Rightarrow$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\Rightarrow|x-y|-2 \stackrel{(i)}{\geq} 0 \text {. Also }|x-y| \stackrel{(i i)}{\geq} 0
$$

(i).(ii) $\Rightarrow(|x-y|)(|x-y|-2) \leq 0 \Rightarrow$ (e) is true \Rightarrow (d) is true \Rightarrow (c) is true \Rightarrow (b) is true \Rightarrow
$\Rightarrow(\mathrm{a})$ is true $: \frac{|\cos A|+\mid \boldsymbol{\operatorname { c o s } B |}}{2} \stackrel{(u)}{\leq} \sqrt{|\cos A \cos B|}+\frac{1}{\sqrt{2}} \sqrt{|\cos A-\cos B|}$
Similarly, $\frac{|\cos B|+|\cos C|}{2} \stackrel{(v)}{\leq} \sqrt{|\cos B \cos C|}+\frac{1}{\sqrt{2}} \sqrt{|\cos B-\cos C|} \&$

$$
\begin{gathered}
\frac{|\cos C|+|\cos A|}{2} \stackrel{(w)}{\leq} \sqrt{|\cos C \cos A|}+\frac{1}{\sqrt{2}} \sqrt{|\cos C-\cos A|} \\
(u)+(v)+(w) \Rightarrow(1) \text { is true (Proved) }
\end{gathered}
$$

Solution 2 by proposer

$$
\begin{gather*}
|\sqrt{\cos A}|=|\sqrt{|(\cos A-\cos B)+\cos B|}| \leq \\
\leq \sqrt{|\cos A-\cos B|+|\cos B|} \leq \sqrt{|\cos A-\cos B|}+\sqrt{|\cos B|} \\
\text { because if } x, y \geq 0 \text { then } \sqrt{x+y} \leq \sqrt{x}+\sqrt{y} \\
\sqrt{|\cos A|}-\sqrt{|\cos B|} \leq \sqrt{|\cos A-\cos B|} \\
|\sqrt{\cos B}|=|\sqrt{|(\cos B-\cos A)+\cos A|}| \leq \\
\leq \sqrt{|\cos B-\cos A|+|\cos A|} \leq \sqrt{|\cos A-\cos B|}+\sqrt{|\cos A|} \\
-(\sqrt{|\cos A|}-\sqrt{|\cos B|}) \leq \sqrt{|\cos A-\cos B|} \tag{2}
\end{gather*}
$$

By (1); (2): $\sqrt{|\cos A-\cos B|} \geq|\sqrt{|\cos A|}-\sqrt{|\cos B|}|$
By squaring: $|\cos A-\cos B| \geq|\cos A|+|\cos B|-2 \sqrt{|\cos A \cos B|}$

$$
\begin{gathered}
\left|2 \sin \frac{B-A}{2} \cos \frac{C}{2}\right| \geq|\cos A|+|\cos B|-2 \sqrt{|\cos A \cos B|} \\
2 \sqrt{|\cos A \cos B|}+2\left|\cos \frac{A}{2} \sin \frac{B-A}{2}\right| \geq|\cos A|+|\cos B| \\
2 \sum\left(\sqrt{|\cos A \cos B|}+\left|\cos \frac{C}{2} \sin \frac{B-A}{2}\right|\right) \geq \sum(|\cos A|+|\cos B|) \\
\\
2 \sum\left(\sqrt{|\cos A \cos B|}+\left|\cos \frac{C}{2} \sin \frac{B-A}{2}\right|\right) \geq 2 \sum|\cos A|
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$|\cos A|+|\cos B|+|\cos C| \leq \sum\left(\sqrt{|\cos A \cos B|}+\left|\cos \frac{C}{2} \sin \frac{B-A}{2}\right|\right)$

UP.104. Prove that if $x_{i} \in(0, \infty) ; i \in \overline{1, n} ; n \in \mathbb{N} ; n \geq 3$;

$$
\begin{aligned}
& x_{n+1}=x_{1} ; x_{1} x_{2} \cdot \ldots \cdot x_{n}=1 \text {, then } \\
& \sum_{i=1}^{n} \frac{\frac{x_{i}}{x_{i+1}}+\frac{x_{i+1}}{x_{i}}+1}{\sqrt{x_{i}^{2}+x_{i} x_{i+1}+x_{i+1}^{2}}} \geq n \sqrt{3}
\end{aligned}
$$

Proposed by Daniel Sitaru - Romania
Solution by Soumitra Mandal-Chandar Nagore-India

$$
\begin{gathered}
\text { We have, } x_{i}^{2}+x_{i} x_{i+1}+x_{i+1}^{2} \geq \frac{3}{4}\left(x_{i}+x_{i+1}\right)^{2} \\
\sum_{i=1}^{n} \frac{\frac{x_{i}}{x_{i+1}}+\frac{x_{i+1}}{x_{i}}+1}{\sqrt{x_{i}^{2}+x_{i} x_{i+1}+x_{i+1}^{2}}}=\sum_{i=1}^{n} \frac{\sqrt{x_{i}^{2}+x_{i} x_{i+1}+x_{i+1}^{2}}}{x_{i} x_{i+1}} \geq \frac{\sqrt{3}}{2} \sum_{i=1}^{n} \frac{x_{i}+x_{i+1}}{x_{i} x_{i+1}} \\
\begin{array}{c}
A M \geq G M \\
\geq \\
3
\end{array} \sum_{i=1}^{n} \frac{1}{\sqrt{x_{i} x_{i+1}}} \stackrel{A M \geq G M}{\geq} \frac{n \sqrt{3}}{\sqrt[n]{\prod_{i=1}^{n} x_{i}}}=n \sqrt{3} \\
\text { (proved) }
\end{gathered}
$$

UP.105. In $A B C ; a, b, c$ - length sides; s - semiperimeter; A, B, C - angled's measures. Prove that:

$$
\left(\frac{A^{3}}{b}+\frac{B^{3}}{c}+\frac{C^{3}}{a}\right)\left(\frac{A^{3}}{c}+\frac{B^{3}}{a}+\frac{C^{3}}{b}\right)\left(\frac{A^{3}}{a}+\frac{B^{3}}{b}+\frac{C^{3}}{c}\right) \geq \frac{\pi^{9}}{216 s^{3}}
$$

Proposed by Daniel Sitaru - Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
L H S \stackrel{\text { Holder }}{\geq} \frac{\left(\sum A\right)^{3}}{3 \sum a} \cdot \frac{\left(\sum A\right)^{3}}{3 \sum a} \cdot \frac{\left(\sum A\right)^{3}}{3 \sum a}=\frac{\left(\sum A\right)^{9}}{27(2 s)^{3}}=\frac{\pi^{9}}{216 s^{3}}
$$

