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A classical approach in the study of the convergence of the Cauchy product of
two series using Toeplitz’s theorem

GABRIEL BREHUESCU- ROMANIA[]

Abstract. In this article, we will prove Toeplitz’s theorem and some fundamental mathematical results that involve it.
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1 INTRODUCTION

Theorem 1.1 (ToePLITZ)P| Let {a, : n € N*,1 < k < n} be a double sequence of real
numbers with the following properties:

(i) m an,, =0, for all positive integers k;
n—oo
(1) nh_{l;();ank =1;

n
(i11) there exists ¢ > 0 such that Z lan k| < ¢, for all positive integers n.
k=1
Then, for any sequence (a:n)n>1 of real numbers which is convergent, the sequence
n
(Yn) =1, defined by y, = Zamkzk, for each n € N*, is also convergent and lim y, =
- —1 n—00
lim z,
n—oo
Proof. Firstly, we consider that the sequence (x,),>1 is constant, i.e there exists o € R
such that x,, = «, for all n € N*. Then:

n
Yn = & g Ap k
k=1

for all n € N*. In virtue of (i7), we get lim y, = a = lim z,.
n—oo n—oo

Now, we consider lim x,, = 0. Take an arbitrary £ > 0. Then, since the previous
n—0o0

assumption, it results that there exists n! € N* such that for all integers n > n! we have
|zn| < 5. Furthermore, from (iii) we have

!Student, ” Alexandru Ioan Cuza” University of lasi; brehuescu.gabriell/@gmail.com

2The proof of this result can be found in [I, pp. 155-156], [5, pp. 12-13], [2 pp. 502-504], or
[4, pp. 37-39]. Furthermore, in the proof presented in this article I used informations from https:
//math.stackexchange.com/questions/2514778/toeplitz-theorem


https://math.stackexchange.com/questions/2514778/toeplitz-theorem
https://math.stackexchange.com/questions/2514778/toeplitz-theorem
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Z lankl < ) lankl <c (1)

k=nl =1

Since (z,),s, is convergent we have that (SEn)n>1 is bounded, so there exists M > 0
such that for all n € N*,|z,,| < M. Using the hypothesis (i), we conclude that for all
kelnl—1, weget lim a,; = 0. Consequently, there exists n., € N*, with k € 1,n! —1

n—oo

such that

€
nkl < 5 Ty 2
[ oM (nl — 1) )
for all integers n > n. ;. Summing up the previous inequalities, we get
ni-1
€
nkl < — 3
" ol < 5o Q
k=1

for all integers n > n? := max {n&k kel nl— 1}
So, using the previous relations, we have

ng 11

n
Wl < lan ] x| = Z |@n k| |e] + Z |an k| |2x| < M— +02— =c
k=1

k=nl
for all integers n > n. := max {nl,n2}. Hence, nlg& Yn = 0.

If lim x, = a € R, then the sequence (z,, — a), ., converges to 0 and from previous
n—00 -
n

considerations we obtain that the sequence (2,),,, defined by z, = Z an i (T, — a), for

k=1
n

each positive integers n, also converges to 0. Hence, v, = 2, + a Z p,, for each positive
k=1
integers n, and lim y, =0+a-1=a. O]
n—oo

Remark 1.1. If lim z,, = 0, then the condition (ii) can be discarded.

n—o0

Remark 1.2. If we consider a, > 0, for alln € N* and for all 1 < k < n, then for any

sequence (r,),5, with nh_)n;O x, = 00, we have nh_)rglo Yp = 00.

Proof. Let (xn)@1 with z,, — co. Without loss of generality, we can suppose that all

terms of the sequence (z,),., are strictly positive. Taking an arbitrary ¢ > 0, since

lim Z an = 1 it follows that there exists n! € N* such that for all integers n > n! we

n—oo

et
g n 1
Since lim w, = oo it follows that the sequence (z,),-, is unbounded. So, there exists
n—o0 =z

n? € N* such that for all integers n > n? we have z,, > 3¢.
Denote n? := max {n!, n2}. From hypothesis (i) we can deduce
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n?

lim g apn kT =0
n—oo
k=1

Therefore, there exists n. > n? thereby

n?

g
E An xT| < 5
k=1

for all integers n > n.. Finally, we have

n
Zan,kxk Zanka:k—l— Z ank$k>——+35 Z Ak =
k=1

k=n2+1 k=n3+1

3
€

— —% + 3¢ ian,k - Zan,kz > —g + 3¢ (ia”’k B é)
k=1 k=1 h=1

for all integers n > n.. Using the condition (m), we have

1 3e

Consequently, there exists k. > n. such that

€ - 1 3e
_5—1—38 (;amk—g) —7 <

for all integers n > k., which implies

€ - 1
—§+35 (;an,k—§> > ¢

lim
n—oo

for all n > k.. Hence, we get
n
= Z Ap kTl > €

for all integers n > k., from where we deduce lim y, = oc.
n—oo

]

Remark 1.3. If we replace the condition (ii) with lim Z ani =1 €R, then hm Yn =

n—oo

[ lim z,
n—oo



2 MAIN THEORETICAL RESULTS
Corollary 2.1 (CESARO MEAN CONVERGENCE THEOREM)H Let (7n),5, be a sequence of

1 n
real numbers and (Z,,),~, defined by T, = — E xy, for all n € N*. If the sequence (x,,),,
= n =
k=1
is convergent and lim x, = x € R, then (Z,),, s also convergent and lim z, = x.
n—o00 - n— 00

Proof. Let us consider the double sequence (an),, .-, defined by a,; = %, for 1 <k <n,
and a, , = 0 otherwise, for all positive integers n. Obviously, for each £ € N*, we get

(anr) — 0and 5 an = 1, for all positive integers n. The conclusion now follows from
n—oo
k=1

TOEPLITZ’s theorem. L]

Remark 2.1. The previous result remains valid even if the sequence (), has an infinite
limit.
Corollary 2.2@ Let (1), be a sequence of positive numbers and (7,),, defined by

n

LyL4+ . +2L
x1 x2 x

n

Ty =

for all positive integers n. If (x,),, has limit, then (Z,),-, also has limit and lim Z, =
n—oo

lim z,.
n—oo

Proof. Let lim z, € R%. Let us consider the lower triangular double sequence (an,k)n 1
—00 =
defined by

1

Tk

nk = 7 1 1
w_1+x_2+"‘+ﬂ

for 1 < k < n and a,; = 0, otherwise, for all positive integers n. Since (asn)w1 is

convergent we have that (z,),., is bounded, so there exists M > 0 such that for all

ne N 0<uz, <M. Then
1 N 1 L + 1 n
T To M
for all positive integers n, which implies 0 < a, 1 < ﬁ for all positive integers n and

M
1 <k < n. Since lim — = 0 it follows that for all £ € N* we have lim a,; = 0.
n—o00 NI n— 00

Furthermore, for all n € N* we have
1

E:%k_E: + 1 f Tt

k=1 =1 Tn

3See [2, pp. 194-195, pp. 198] or [4, pp. 39
4See [2, pp. 198-199]



n
and for ¢ = 2 > 0 we have Z lanx| < ¢, for all positive integers n. Applying Toeplitz’s

k=1
theorem, we get: n
lim z, = lim g anpTr = lim z,
n—o0 n— oo n—oo
k=1 1
Next, we consider lim x,, = 0o, which there is equivalent to lim — = 0. Then, in
n—00 n—oo Ty,
virtue of Corollary 2.1], we have
1 1 1
fim 2o e
n— o0 n
or equivalent
) n
lim — T T = 00
n—0o0 H + T2 + + .

Remark 2.2. We know the means inequality

n < <x1—|—x2+...—|—xn
VT1Tg ... T
1 1 TR 142 n X
i pled M n
1 xr2

Tn

for all x, > 0,n € N*. Using C’orollary and C’orollary we obtain that if (xn),,
has limit, th
a5 e o lim /x129...2, = lim z,

n—oo n—o0

Corollary 2.3E| Let (an),~q and (b)), -, be two sequences of real numbers with the following
properties:

(i) lim a, = lim b, =0
n—oo n—oo

(i1) Vn € N*, 3¢ > 0 such that Z lag| < c.

k=1

Then
lim (albn + agbn,1 + ...+ CLnb1> =0

n—oo

Proof. Let be the double sequence (an),, -, defined by
Qp k. = Op—k+1

for 1 <k < n and a,; = 0 otherwise, for all positive integers n. Then:
arb, +asb,_1 + ... +a,b; = Z 1Dk
k=1

The sequence (ay, ) satisfies the first and third conditions of the TOEPLITZ’s theorem
and, according to Remark the second condition can be discarded because lim b, = 0.

n—oo

The conclusion now follows from TOEPLITZ’s theorem.

[]

®See [2, pp. 505] or [4, pp. 40]



Corollary 2.4@ Let (ay,) (bn),>1 be sequences convergent to a, respectively b (a,b € R).

n=1"?
Then
. albn + (lgbn_l + ...+ Clnbl
lim = ab
n—00 n
Proof. Let be the sequence (c,),-, defined by:

n
1
Cp = — g akbnkarl
n
k=1

for all positive integers n. Firstly, we consider b = 0. Let be double sequence (a, )
defined by

n,k>1

1+ bp_pt1

Apk = ——
n

for 1 <k < nand a, = 0 otherwise, for all positive integers n. Since (by,),,-, is convergent

we have that (bn>n>1 is bounded. Consequently, for all £ € N*, we have lim a,; = 0 and

n—oo
for all n € N* :

Zamk:Z%:lnL%Zbk (4)
k=1 k=1 k=1

Therefore, in virtue of Corollary , we have

RN .
i 5 2 be = i b =0 ®)
which implies
lim E ang =1 (6)
n—oo
k=1

Furthermore, there exists a constant K > 0 such that for all n € N* we have |1 + b,,| <
K. Then, for all n > 1, we have

. . . |1+bn—k+1| nk o
> ankl =Y . <—=K (7)
k=1 k=1
Hence, applying TOEPLITZ’s theorem, we get
NI R .
s 52 (A buoira) 0 = i D dnt = litg an = ®)
k=1 k=1
and using lim — Z a = a, we obtain
n—oo 1
k=1
—1Zn:(1+b ) 1zn: S0 ()
Cn = n £ n—k+1) Ak n £ ag .

Now, considering the general case, we write ¢,, as

6See [4, pp. 40-41] or [5, pp. 14]



1 — 1 «
cn:—g an,k+1(bk—b)—|—b~—§ ap,Vn > 1
n n
k=1 k=1

Therefore, in virtue of previous relations, we have

. 1g
nlljlg() - ; ap—g+1 (b —b) =0 (10)

Furthermore, using lim — E a = a, we obtain:
n—oo M 1

lim ¢, =04 ab = ab

n—00

and this result is proved. O]
Lemma 2.1.|Z| Let (2n),51 and (Yn),>, be two sequences of real numbers and s, =

Zxk,Vn € N*. Then, for all n € N*, we get:

k=1 n n
> wye = Satnsr — Y Sk (Yrs1 — Un)
k=1 k=1

Proof. Let so = 0. For each integers k£ > 1 we have s — s_1 = xp. Hence:

Zxkyk = Z (sk — Sp—1) Y =
k=1 1

k=
=y (s1—80) + Y2 (s2—51)+ ...+ Yn(Sp — Sp_1) =
=351 (yl - y2) + .ot S (yn—l - yn) + sp (yn - yn+1) + SnYn+1 =

n

= SuYni1 — Y 5k (Usr1 — Us)
k=1

]
Corollary 2.5 (KRONECKER)E Let (an),>, and (b,),~, be two sequences of real numbers
such that (by,),,~, is an increasing sequence of nonnegative real numbers with lim b, = occ.

n—oo
If the series Z a, converges, then
n=1 n
o1
Jon 5D b =0
k=1
Proof. Using Lemma [2.1], we get
1 n 1 n—1
E Z akbk = Sn — E (bk+1 — bk) Sk (11)
k=1 k=1
"See [6, pp. 98]
8See [3]



n
where s, = Z ay, for n € N*, denotes the sequence of partial sums.
k=1

Let us consider the double sequence (a, k), -, defined by
b1 —0b
Qn | = k—an u
for 1 < k < n and a,; = 0 otherwise, for all positive integers n. For all integers n > 1, we
have
b1 — bk by — b
n. = - 1 12
Z Unk = Z b, b, e (12)
k=1
and for each k € N*,
b1 —0
lim a,; = lim Sl Tk, (13)
n—00 n—00 b,

because lim b,, = co. Furthermore we have

n—oo
bk-i—l by b, —b
§:|ank|—§: e (14)

TL

Hence, applying TOEPLITZ S theorern, we get:

n—1 n—1
1
Jim o ; (by1 — by,) s, = ggol; Qo psy = lim s, (15)

and using (1)), we obtain Lo
fim 2 b =0

n

m
A result equivalent to the previous one is the following

Corollary 2.6. Let (a,),, and (b,),~, be two sequences of real numbers such that (by,),, -,
1 an increasing sequence of non-negative real numbers with lim b, = co. If the series
n—oo
oo a/n ‘ n
— converges, then lim ™ g ap = 0.

b n—oo
n=1 " " k=1

In the following, we will state and demonstrate some results regarding the study of the
convergence of the product of numerical series. Firstly, we start with the definition of a
fundamental mathematical concept, namely the CAUCHY product of two series. For more
details in the study of infinite series, see [3] or [6].

Definition 2.1 (CAucHY product of two infinite series). Let Z T, and Z Yn be two

n=1 n=1
infinite series. The CAUCHY product of these series is defined by Z Zn, where the sequence
n=1

(#n)nso 18 defined by z, = Zxkyn,kﬂ, for all n € N*.

k=1



Next, we will state and prove two fundamental results that provide sufficient conditions
for the convergence of the CAUCHY product.

Theorem 2.1 (MERTENS)/’| Let an and an be two convergent series. Suppose that

n=1 n=1
at least one of the series is absolutely convergent. Then the product in CAUCHY s form,
oo

E Zn, 1S convergent and:

S (8) (52

oo
Proof. Let A, respectively B be the sums of series an, respectively Zyn. Let us

n=1 n=1

assume that Z Yn is absolutely Convergent Then, there exists K > 0 such that:

n=1
Z lyn| < K,¥n e N (16)
k=1
AISO let: n n n
A, = wk,Bn:Zyk, and Cn:szVnEN*,
k=1 k=1 =
be the sequences of partial sums of Z Tn, Z Zp, respectively Z Z,. Ordering the terms
n=1 n=1 n=1
of (Crn),>1 by the (y,),, terms, we obtain that:
Cn=y1An +1yAn 1+ ...y (17)

for all positive integers n. Since hm A, =Ait follows that there exists a sequence (av,),,-,

convergent to 0 such that A, + an = A,Vn € N*. Consequently, we can rewrite (), as:
Cn = AB,, — (Y100 + Y201 + ... + Y1) (18)
for all positive integers n. From lim vy, = hm oy = O and condition 1D we can use

n—oo
Corollary 2.3 and get that:
le (y10n + Y21 + ...+ ypor) = 0,

which implies lim C),, = AB and this concludes the proof of the theorem. m

n—o0
Theorem 2.2 (ABEL) Let an and an be two convergent series. Suppose that the
n=1 n=1

product in CAUCHY s form, Zzn, is convergent. Then:
n=0

S (80) ()

9See [3] or [4, pp. 46-47] and for a different approach see [6, pp. 114-116]
10See [3] or [4, pp. 47-48]




o0 o) [e.e]
Proof. Let A, B, respectively C' the sums of series Z T, Z Yn, respectively Z Zn. Also

n=1 n=1 n=1

let:

n

A, = ixk,Bn = iyk, and C,, = ZZkVn eN
k=1 k=1

k=1

[e.9] o0 o
be the sequences of partial sums of Z Tn, Z Tp, respectively Z Zn.

n=1 n=1 n=1
Firstly, we have
Ci+Co+...+C, =

n

=2y + (T + 2+ Ton) F oD (1Y + Tayhor o TR) =
k=1

n k i
- Z Z ijyifjdrl = Aan + AQanl + . .. + AnBl

k=1 i=1 j=1

1 n
From Corollary 2.3 we have lim — g Cy = C and from Corollary 2.6 we have
n—oo N,
k=1

. AB,+AB,_ 1+ ...+ A,B;
lim

n— 00 n

=AB

But we also have that
C1+CQ++Cn:Aan+AQBn,1++AnB1
so C' = AB and this concludes the proof of the theorem. n
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