Romanian Mathematical Magazine Web: http://www.ssmrmh.ro The Author. This article is published with open access

A classical approach in the study of the convergence of the Cauchy product of two series using Toeplitz's theorem

GABRIEL BREHUESCU- ROMANIA¹

Abstract. In this article, we will prove Toeplitz's theorem and some fundamental mathematical results that involve it. Keywords: Double sequence, Toeplitz's transformation, Cauchy's product, Mertens, Abel.

1 INTRODUCTION

Theorem 1.1 (TOEPLITZ).² Let $\{a_{n,k} : n \in \mathbb{N}^*, 1 \leq k \leq n\}$ be a double sequence of real numbers with the following properties:

- (i) $\lim_{n \to \infty} a_{n,k} = 0$, for all positive integers k;
- (*ii*) $\lim_{n \to \infty} \sum_{k=1}^{n} a_{n,k} = 1;$

(iii) there exists c > 0 such that $\sum_{k=1}^{n} |a_{n,k}| < c$, for all positive integers n.

Then, for any sequence $(x_n)_{n\geq 1}$ of real numbers which is convergent, the sequence $(y_n)_{n\geq 1}$, defined by $y_n = \sum_{k=1}^n a_{n,k} x_k$, for each $n \in \mathbb{N}^*$, is also convergent and $\lim_{n \to \infty} y_n =$ $\lim_{n \to \infty} x_n$

Proof. Firstly, we consider that the sequence $(x_n)_{n \ge 1}$ is constant, i.e there exists $\alpha \in \mathbb{R}$ such that $x_n = \alpha$, for all $n \in \mathbb{N}^*$. Then:

$$y_n = \alpha \sum_{k=1}^n a_{n,k}$$

for all $n \in \mathbb{N}^*$. In virtue of (*ii*), we get $\lim_{n \to \infty} y_n = \alpha = \lim_{n \to \infty} x_n$. Now, we consider $\lim_{n \to \infty} x_n = 0$. Take an arbitrary $\varepsilon > 0$. Then, since the previous assumption, it results that there exists $n_{\varepsilon}^1 \in \mathbb{N}^*$ such that for all integers $n \ge n_{\varepsilon}^1$ we have $|x_n| < \frac{\varepsilon}{2c}$. Furthermore, from (*iii*) we have

 $^{^1\}mathrm{Student},$ "Alexandru Ioan Cuza" University of Iași;
 brehuescu.gabriel14@gmail.com

²The proof of this result can be found in [1, pp. 155-156], [5, pp. 12-13], [2, pp. 502-504], or [4, pp. 37-39]. Furthermore, in the proof presented in this article I used informations from https: //math.stackexchange.com/questions/2514778/toeplitz-theorem

$$\sum_{k=n_{\varepsilon}^{n}}^{n} |a_{n,k}| \leqslant \sum_{k=1}^{n} |a_{n,k}| < c \tag{1}$$

Since $(x_n)_{n\geq 1}$ is convergent we have that $(x_n)_{n\geq 1}$ is bounded, so there exists M>0such that for all $n \in \mathbb{N}^*$, $|x_n| < M$. Using the hypothesis (i), we conclude that for all $k \in \overline{1, n_{\varepsilon}^1 - 1}$, we get $\lim_{n \to \infty} a_{n,k} = 0$. Consequently, there exists $n_{\varepsilon,k} \in \mathbb{N}^*$, with $k \in \overline{1, n_{\varepsilon}^1 - 1}$ such that

$$|a_{n,k}| < \frac{\varepsilon}{2M\left(n_{\varepsilon}^{1}-1\right)},\tag{2}$$

for all integers $n \ge n_{\varepsilon,k}$. Summing up the previous inequalities, we get

$$\sum_{k=1}^{a_{\varepsilon}^{1}-1} |a_{n,k}| < \frac{\varepsilon}{2M}$$
(3)

for all integers $n \ge n_{\varepsilon}^2 := \max\left\{n_{\varepsilon,k} : k \in \overline{1, n_{\varepsilon}^1 - 1}\right\}$

So, using the previous relations, we have

$$|y_n| \leqslant \sum_{k=1}^n |a_{n,k}| \, |x_k| = \sum_{k=1}^{n_{\varepsilon}^2 - 1} |a_{n,k}| \, |x_k| + \sum_{k=n_{\varepsilon}^1}^n |a_{n,k}| \, |x_k| \leqslant M \frac{\varepsilon}{2M} + c \frac{\varepsilon}{2c} = \varepsilon$$

for all integers $n \ge n_{\varepsilon} := \max\{n_{\varepsilon}^1, n_{\varepsilon}^2\}$. Hence, $\lim_{n \to \infty} y_n = 0$. If $\lim_{n \to \infty} x_n = a \in \mathbb{R}$, then the sequence $(x_n - a)_{n \ge 1}$ converges to 0 and from previous considerations we obtain that the sequence $(z_n)_{n\geq 1}$, defined by $z_n = \sum_{k=1}^{n} a_{n,k} (x_n - a)$, for

each positive integers n, also converges to 0. Hence, $y_n = z_n + a \sum_{k=1}^{n} a_{n,k}$, for each positive integers n, and $\lim_{n \to \infty} y_n = 0 + a \cdot 1 = a$.

Remark 1.1. If $\lim_{n\to\infty} x_n = 0$, then the condition (ii) can be discarded.

Remark 1.2. If we consider $a_{n,k} > 0$, for all $n \in \mathbb{N}^*$ and for all $1 \leq k \leq n$, then for any sequence $(x_n)_{n \ge 1}$ with $\lim_{n \to \infty} x_n = \infty$, we have $\lim_{n \to \infty} y_n = \infty$.

Proof. Let $(x_n)_{n\geq 1}$ with $x_n \to \infty$. Without loss of generality, we can suppose that all terms of the sequence $(x_n)_{n\geq 1}$ are strictly positive. Taking an arbitrary $\varepsilon > 0$, since $\lim_{n\to\infty}\sum_{k=1}a_{n,k}=1 \text{ it follows that there exists } n^1_{\varepsilon}\in\mathbb{N}^* \text{ such that for all integers } n\geqslant n^1_{\varepsilon} \text{ we}$ get

$$\sum_{k=1}^{n} a_{n,k} < \frac{1}{3}$$

Since $\lim_{n\to\infty} x_n = \infty$ it follows that the sequence $(x_n)_{n\geq 1}$ is unbounded. So, there exists $n_{\varepsilon}^{2} \in \mathbb{N}^{*}$ such that for all integers $n \ge n_{\varepsilon}^{2}$ we have $x_{n} > 3\varepsilon$. Denote $n_{\varepsilon}^{3} := \max\{n_{\varepsilon}^{1}, n_{\varepsilon}^{2}\}$. From hypothesis (i) we can deduce

$$\lim_{n \to \infty} \sum_{k=1}^{n_{\varepsilon}^2} a_{n,k} x_k = 0$$

Therefore, there exists $n_{\varepsilon} > n_{\varepsilon}^3$ thereby

$$\left|\sum_{k=1}^{n_{\varepsilon}^3} a_{n,k} x_k\right| < \frac{\varepsilon}{2}$$

for all integers $n \ge n_{\varepsilon}$. Finally, we have

$$\sum_{k=1}^{n} a_{n,k} x_k = \sum_{k=1}^{n_{\varepsilon}^2} a_{n,k} x_k + \sum_{k=n_{\varepsilon}^3+1}^{n} a_{n,k} x_k > -\frac{\varepsilon}{2} + 3\varepsilon \sum_{k=n_{\varepsilon}^3+1}^{n} a_{n,k} =$$
$$= -\frac{\varepsilon}{2} + 3\varepsilon \left(\sum_{k=1}^{n} a_{n,k} - \sum_{k=1}^{n_{\varepsilon}^3} a_{n,k} \right) > -\frac{\varepsilon}{2} + 3\varepsilon \left(\sum_{k=1}^{n} a_{n,k} - \frac{1}{3} \right)$$

for all integers $n \ge n_{\varepsilon}$. Using the condition (*ii*), we have

$$\lim_{n \to \infty} \left[-\frac{\varepsilon}{2} + 3\varepsilon \left(\sum_{k=1}^n a_{n,k} - \frac{1}{3} \right) \right] = \frac{3\varepsilon}{2}$$

Consequently, there exists $k_{\varepsilon}>n_{\varepsilon}$ such that

$$\left| -\frac{\varepsilon}{2} + 3\varepsilon \left(\sum_{k=1}^{n} a_{n,k} - \frac{1}{3} \right) - \frac{3\varepsilon}{2} \right| < \frac{\varepsilon}{2}$$

for all integers $n \ge k_{\varepsilon}$, which implies

$$-\frac{\varepsilon}{2} + 3\varepsilon \left(\sum_{k=1}^{n} a_{n,k} - \frac{1}{3}\right) > \varepsilon$$

for all $n \ge k_{\varepsilon}$. Hence, we get

$$y_n = \sum_{k=1}^n a_{n,k} x_k > \varepsilon$$

for all integers $n \ge k_{\varepsilon}$, from where we deduce $\lim_{n \to \infty} y_n = \infty$.

Remark 1.3. If we replace the condition (ii) with $\lim_{n\to\infty}\sum_{k=1}^n a_{n,k} = l \in \mathbb{R}$, then $\lim_{n\to\infty}y_n = l \cdot \lim_{n\to\infty}x_n$

2 Main theoretical results

Corollary 2.1 (CESÀRO MEAN CONVERGENCE THEOREM).³ Let $(x_n)_{n\geq 1}$ be a sequence of real numbers and $(\bar{x}_n)_{n\geq 1}$ defined by $\bar{x}_n = \frac{1}{n} \sum_{k=1}^n x_k$, for all $n \in \mathbb{N}^*$. If the sequence $(x_n)_{n\geq 1}$ is convergent and $\lim_{n\to\infty} x_n = x \in \mathbb{R}$, then $(\bar{x}_n)_{n\geq 1}$ is also convergent and $\lim_{n\to\infty} \bar{x}_n = x$.

Proof. Let us consider the double sequence $(a_{n,k})_{n,k\geq 1}$ defined by $a_{n,k} = \frac{1}{n}$, for $1 \leq k \leq n$, and $a_{n,k} = 0$ otherwise, for all positive integers n. Obviously, for each $k \in \mathbb{N}^*$, we get $(a_{n,k}) \xrightarrow[n\to\infty]{} 0$ and $\sum_{k=1}^{n} a_{n,k} = 1$, for all positive integers n. The conclusion now follows from TOEPLITZ's theorem.

Remark 2.1. The previous result remains valid even if the sequence $(x_n)_{n\geq 1}$ has an infinite limit.

Corollary 2.2.⁴ Let $(x_n)_{n\geq 1}$ be a sequence of positive numbers and $(\bar{x}_n)_{n\geq 1}$ defined by

$$\bar{x}_n = rac{n}{rac{1}{x_1} + rac{1}{x_2} + \ldots + rac{1}{x_n}}$$

for all positive integers n. If $(x_n)_{n\geq 1}$ has limit, then $(\bar{x}_n)_{n\geq 1}$ also has limit and $\lim_{n\to\infty} \bar{x}_n = \lim_{n\to\infty} x_n$.

Proof. Let $\lim_{n\to\infty} x_n \in \mathbb{R}^*_+$. Let us consider the lower triangular double sequence $(a_{n,k})_{n,k\geq 1}$ defined by

$$a_{n,k} = \frac{\frac{1}{x_k}}{\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_n}}$$

for $1 \leq k \leq n$ and $a_{n,k} = 0$, otherwise, for all positive integers n. Since $(x_n)_{n \geq 1}$ is convergent we have that $(x_n)_{n \geq 1}$ is bounded, so there exists M > 0 such that for all $n \in \mathbb{N}^*, 0 < x_n < M$. Then

$$\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_n} > \frac{n}{M}$$

for all positive integers n, which implies $0 < a_{n,k} < \frac{M}{nx_k}$, for all positive integers n and $1 \leq k \leq n$. Since $\lim_{n \to \infty} \frac{M}{nx_k} = 0$ it follows that for all $k \in \mathbb{N}^*$ we have $\lim_{n \to \infty} a_{n,k} = 0$.

Furthermore, for all $n \in \mathbb{N}^*$ we have

$$\sum_{k=1}^{n} a_{n,k} = \sum_{k=1}^{n} \frac{\frac{1}{x_k}}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}} = 1$$

³See [2, pp. 194-195, pp. 198] or [4, pp. 39]

⁴See [2, pp. 198-199]

and for c = 2 > 0 we have $\sum_{k=1}^{n} |a_{n,k}| < c$, for all positive integers *n*. Applying Toeplitz's theorem, we get:

$$\lim_{n \to \infty} \bar{x}_n = \lim_{n \to \infty} \sum_{k=1}^n a_{n,k} x_k = \lim_{n \to \infty} x_n$$

Next, we consider $\lim_{n\to\infty} x_n = \infty$, which there is equivalent to $\lim_{n\to\infty} \frac{1}{x_n} = 0$. Then, in virtue of Corollary 2.1, we have

$$\lim_{n \to \infty} \frac{\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_n}}{n} = 0$$

or equivalent

$$\lim_{n \to \infty} \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_n}} = \infty$$

Remark 2.2. We know the means inequality

$$\frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_n}} \leqslant \sqrt[n]{x_1 x_2 \ldots x_n} \leqslant \frac{x_1 + x_2 + \ldots + x_n}{n}$$

for all $x_n > 0, n \in \mathbb{N}^*$. Using Corollary 2.1 and Corollary 2.2, we obtain that if $(x_n)_{n \ge 1}$ has limit, then $\lim_{n \to \infty} \frac{n}{x_n - x_n} = \lim_{n \to \infty} x_n$

$$\lim_{n \to \infty} \sqrt[n]{x_1 x_2 \dots x_n} = \lim_{n \to \infty} x_n$$

Corollary 2.3.⁵ Let $(a_n)_{n \ge 0}$ and $(b_n)_{n \ge 0}$ be two sequences of real numbers with the following properties:

(i) $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0$

(ii)
$$\forall n \in \mathbb{N}^*, \exists c > 0 \text{ such that } \sum_{k=1}^n |a_k| < c$$

Then

$$\lim_{n \to \infty} \left(a_1 b_n + a_2 b_{n-1} + \ldots + a_n b_1 \right) = 0$$

Proof. Let be the double sequence $(a_{n,k})_{n,k\geq 1}$ defined by

$$a_{n,k} = a_{n-k+1}$$

for $1 \leq k \leq n$ and $a_{n,k} = 0$ otherwise, for all positive integers n. Then:

$$a_1b_n + a_2b_{n-1} + \ldots + a_nb_1 = \sum_{k=1}^n a_{n,k}b_k$$

The sequence $(a_{n,k})$ satisfies the first and third conditions of the TOEPLITZ's theorem and, according to Remark 1.1, the second condition can be discarded because $\lim_{n\to\infty} b_n = 0$.

The conclusion now follows from TOEPLITZ's theorem.

 $^{{}^{5}}See [2, pp. 505] or [4, pp. 40]$

Corollary 2.4.⁶ Let $(a_n)_{n \ge 1}$, $(b_n)_{n \ge 1}$ be sequences convergent to a, respectively b $(a, b \in \mathbb{R})$. Then

$$\lim_{n \to \infty} \frac{a_1 b_n + a_2 b_{n-1} + \ldots + a_n b_1}{n} = ab$$

Proof. Let be the sequence $(c_n)_{n \ge 1}$ defined by:

$$c_n = \frac{1}{n} \sum_{k=1}^n a_k b_{n-k+1}$$

for all positive integers n. Firstly, we consider b = 0. Let be double sequence $(a_{n,k})_{n,k\geq 1}$ defined by 1+b

$$a_{n,k} = \frac{1 + b_{n-k+1}}{n}$$

for $1 \leq k \leq n$ and $a_{n,k} = 0$ otherwise, for all positive integers n. Since $(b_n)_{n \geq 1}$ is convergent we have that $(b_n)_{n \geq 1}$ is bounded. Consequently, for all $k \in \mathbb{N}^*$, we have $\lim_{n \to \infty} a_{n,k} = 0$ and for all $n \in \mathbb{N}^*$:

$$\sum_{k=1}^{n} a_{n,k} = \sum_{k=1}^{n} \frac{1+b_{n-k+1}}{n} = 1 + \frac{1}{n} \sum_{k=1}^{n} b_k \tag{4}$$

Therefore, in virtue of Corollary 2.1, we have

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} b_k = \lim_{n \to \infty} b_n = 0$$
(5)

which implies

$$\lim_{n \to \infty} \sum_{k=1}^{n} a_{n,k} = 1 \tag{6}$$

Furthermore, there exists a constant K > 0 such that for all $n \in \mathbb{N}^*$ we have $|1 + b_n| < K$. Then, for all $n \ge 1$, we have

$$\sum_{k=1}^{n} |a_{n,k}| = \sum_{k=1}^{n} \frac{|1+b_{n-k+1}|}{n} < \frac{nK}{n} = K$$
(7)

Hence, applying TOEPLITZ's theorem, we get

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} (1 + b_{n-k+1}) a_k = \lim_{n \to \infty} \sum_{k=1}^{n} a_{n,k} a_k = \lim_{n \to \infty} a_n = a$$
(8)

and using $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} a_k = a$, we obtain

$$c_n = \frac{1}{n} \sum_{k=1}^n \left(1 + b_{n-k+1} \right) a_k - \frac{1}{n} \sum_{k=1}^n a_k \underset{n \to \infty}{\to} 0$$
(9)

Now, considering the general case, we write c_n as

 6 See [4, pp. 40-41] or [5, pp. 14]

$$c_n = \frac{1}{n} \sum_{k=1}^n a_{n-k+1} \left(b_k - b \right) + b \cdot \frac{1}{n} \sum_{k=1}^n a_k, \forall n \ge 1$$

Therefore, in virtue of previous relations, we have

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} a_{n-k+1} \left(b_k - b \right) = 0 \tag{10}$$

Furthermore, using $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} a_k = a$, we obtain:

$$\lim_{n \to \infty} c_n = 0 + ab = ab$$

and this result is proved.

Lemma 2.1.⁷ Let $(x_n)_{n \ge 1}$ and $(y_n)_{n \ge 1}$ be two sequences of real numbers and $s_n = \sum_{k=1}^{n} x_k, \forall n \in \mathbb{N}^*$. Then, for all $n \in \mathbb{N}^*$, we get: $\sum_{k=1}^{n} x_k y_k = s_n y_{n+1} - \sum_{k=1}^{n} s_k (y_{k+1} - y_k)$

Proof. Let $s_0 = 0$. For each integers $k \ge 1$ we have $s_k - s_{k-1} = x_k$. Hence:

$$\sum_{k=1}^{n} x_k y_k = \sum_{k=1}^{n} (s_k - s_{k-1}) y_k =$$

= $y_1 (s_1 - s_0) + y_2 (s_2 - s_1) + \dots + y_n (s_n - s_{n-1}) =$
= $s_1 (y_1 - y_2) + \dots + s_{n-1} (y_{n-1} - y_n) + s_n (y_n - y_{n+1}) + s_n y_{n+1} =$
= $s_n y_{n+1} - \sum_{k=1}^{n} s_k (y_{k+1} - y_k)$

Corollary 2.5 (KRONECKER).⁸ Let $(a_n)_{n \ge 1}$ and $(b_n)_{n \ge 1}$ be two sequences of real numbers such that $(b_n)_{n \ge 1}$ is an increasing sequence of nonnegative real numbers with $\lim_{n \to \infty} b_n = \infty$. If the series $\sum_{n=1}^{\infty} a_n$ converges, then

$$\lim_{n \to \infty} \frac{1}{b_n} \sum_{k=1}^n b_k a_k =$$

Proof. Using Lemma 2.1, we get

$$\frac{1}{b_n} \sum_{k=1}^n a_k b_k = s_n - \frac{1}{b_n} \sum_{k=1}^{n-1} \left(b_{k+1} - b_k \right) s_k \tag{11}$$

0

 7 See [6, pp. 98]

⁸See [3]

where $s_n = \sum_{k=1}^n a_k$, for $n \in \mathbb{N}^*$, denotes the sequence of partial sums.

Let us consider the double sequence $(a_{n,k})_{n,k \ge 1}$ defined by

$$a_{n,k} = \frac{b_{k+1} - b_k}{b_n}$$

for $1 \leq k \leq n$ and $a_{n,k} = 0$ otherwise, for all positive integers n. For all integers $n \geq 1$, we have

$$\sum_{k=1}^{n-1} a_{n,k} = \sum_{k=1}^{n-1} \frac{b_{k+1} - b_k}{b_n} = \frac{b_n - b_1}{b_n} \xrightarrow[n \to \infty]{} 1$$
(12)

and for each $k \in \mathbb{N}^*$,

$$\lim_{n \to \infty} a_{n,k} = \lim_{n \to \infty} \frac{b_{k+1} - b_k}{b_n} = 0,$$
(13)

because $\lim_{n \to \infty} b_n = \infty$. Furthermore, we have

$$\sum_{k=1}^{n-1} |a_{n,k}| = \sum_{k=1}^{n-1} \frac{b_{k+1} - b_k}{b_n} = \frac{b_n - b_1}{b_n} < 1$$
(14)

Hence, applying TOEPLITZ's theorem, we get:

$$\lim_{n \to \infty} \frac{1}{b_n} \sum_{k=1}^{n-1} \left(b_{k+1} - b_k \right) s_k = \lim_{n \to \infty} \sum_{k=1}^{n-1} a_{n,k} s_k = \lim_{n \to \infty} s_n \tag{15}$$

and using (11), we obtain

$$\lim_{n \to \infty} \frac{1}{b_n} \sum_{k=1}^n b_k a_k = 0$$

A result equivalent to the previous one is the following

Corollary 2.6. Let $(a_n)_{n \ge 1}$ and $(b_n)_{n \ge 1}$ be two sequences of real numbers such that $(b_n)_{n \ge 1}$ is an increasing sequence of non-negative real numbers with $\lim_{n \to \infty} b_n = \infty$. If the series $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ converges, then $\lim_{n \to \infty} \frac{1}{b_n} \sum_{k=1}^n a_k = 0$.

In the following, we will state and demonstrate some results regarding the study of the convergence of the product of numerical series. Firstly, we start with the definition of a fundamental mathematical concept, namely the CAUCHY product of two series. For more details in the study of infinite series, see [3] or [6].

Definition 2.1 (CAUCHY product of two infinite series). Let $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ be two infinite series. The CAUCHY product of these series is defined by $\sum_{n=1}^{\infty} z_n$, where the sequence

$$(z_n)_{n\geq 0}$$
 is defined by $z_n = \sum_{k=1}^n x_k y_{n-k+1}$, for all $n \in \mathbb{N}^*$.

Next, we will state and prove two fundamental results that provide sufficient conditions for the convergence of the CAUCHY product.

Theorem 2.1 (MERTENS).⁹ Let $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} b_n$ be two convergent series. Suppose that at least one of the series is absolutely convergent. Then the product in CAUCHY's form, $\sum_{n=1}^{\infty} z_n$, is convergent and: $\sum_{n=1}^{\infty} z_n = \left(\sum_{n=1}^{\infty} x_n\right) \left(\sum_{n=1}^{\infty} y_n\right)$

$$\sum_{n=1}^{\infty} z_n = \left(\sum_{n=1}^{\infty} x_n\right) \left(\sum_{n=1}^{\infty} y_n\right)$$

Proof. Let A, respectively B be the sums of series $\sum_{n=1}^{\infty} x_n$, respectively $\sum_{n=1}^{\infty} y_n$. Let us

assume that $\sum_{n=1}^{\infty} y_n$ is absolutely convergent. Then, there exists K > 0 such that: $\sum_{k=1}^{n} |y_n| < K, \forall n \in \mathbb{N}$ (16)

$$A_n = \sum_{k=1}^n x_k, B_n = \sum_{k=1}^n y_k, \text{ and } C_n = \sum_{k=1}^n z_k \forall n \in \mathbb{N}^*,$$

be the sequences of partial sums of $\sum_{n=1}^{\infty} x_n$, $\sum_{n=1}^{\infty} x_n$, respectively $\sum_{n=1}^{\infty} z_n$. Ordering the terms of $(C_n)_{n\geq 1}$ by the $(y_n)_{n\geq 1}$ terms, we obtain that:

$$C_n = y_1 A_n + y_2 A_{n-1} + \dots + y_n A_1 \tag{17}$$

for all positive integers n. Since $\lim_{n \to \infty} A_n = A$ it follows that there exists a sequence $(\alpha_n)_{n \ge 1}$ convergent to 0 such that $A_n + \alpha_n = A, \forall n \in \mathbb{N}^*$. Consequently, we can rewrite C_n as: $C_n = AB_n - (y_1\alpha_n + y_2\alpha_{n-1} + \ldots + y_n\alpha_1)$ (18)

for all positive integers n. From $\lim_{n\to\infty} y_n = \lim_{n\to\infty} \alpha_n = 0$ and condition (16), we can use Corollary 2.3 and get that:

$$\lim_{n \to \infty} \left(y_1 \alpha_n + y_2 \alpha_{n-1} + \ldots + y_n \alpha_1 \right) = 0,$$

which implies $\lim_{n \to \infty} C_n = AB$ and this concludes the proof of the theorem.

Theorem 2.2 (ABEL).¹⁰ Let $\sum_{\substack{n=1\\\infty}}^{\infty} x_n$ and $\sum_{n=1}^{\infty} b_n$ be two convergent series. Suppose that the

product in CAUCHY's form, $\sum_{n=0}^{\infty} z_n$, is convergent. Then:

$$\sum_{n=1}^{\infty} z_n = \left(\sum_{n=1}^{\infty} x_n\right) \left(\sum_{n=1}^{\infty} y_n\right).$$

 9 See [3] or [4, pp. 46-47] and for a different approach see [6, pp. 114-116]

 10 See [3] or [4, pp. 47-48]

Proof. Let A, B, respectively C the sums of series $\sum_{n=1}^{\infty} x_n$, $\sum_{n=1}^{\infty} y_n$, respectively $\sum_{n=1}^{\infty} z_n$. Also let:

$$A_n = \sum_{k=1}^n x_k, B_n = \sum_{k=1}^n y_k, \text{ and } C_n = \sum_{k=1}^n z_k \forall n \in \mathbb{N}$$

be the sequences of partial sums of $\sum_{n=1}^{\infty} x_n$, $\sum_{n=1}^{\infty} x_n$, respectively $\sum_{n=1}^{\infty} z_n$.

Firstly, we have

$$C_1 + C_2 + \ldots + C_n =$$

$$= x_1 y_1 + (x_1 y_1 + x_1 y_2 + x_2 y_1) + \ldots + \sum_{k=1}^n (x_1 y_k + x_2 y_{k-1} + \ldots + x_k y_1) =$$

$$=\sum_{k=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}x_{j}y_{i-j+1} = A_{1}B_{n} + A_{2}B_{n-1} + \ldots + A_{n}B_{1}$$

From Corollary 2.3 we have $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} C_k = C$ and from Corollary 2.6 we have

$$\lim_{n \to \infty} \frac{A_1 B_n + A_2 B_{n-1} + \ldots + A_n B_1}{n} = AB$$

But we also have that

$$C_1 + C_2 + \ldots + C_n = A_1 B_n + A_2 B_{n-1} + \ldots + A_n B_1$$

so C = AB and this concludes the proof of the theorem.

References

- T. Andreescu, C. Mortici, M. Tetiva, *Mathematical Bridges*, Springer Publishing House, New York, 2017.
- [2] D.M. Bătineţu, Probleme de matematică pentru treapta a II-a de liceu, Albatros Publishing House, Bucharest, 1979.
- [3] G.M Fihtenholtz, Curs de calcul diferențial şi integral, Technical Publishing House, Bucharest, Vol. 2, 1964.
- [4] M. Flygare, Some Properties of Infinite Series (Bachelor thesis), Karlstads universitet-Faculty of Technology and Science, 2012.
- [5] V. Pop (coord.), Teme şi probleme pentru concursurile studenţeşti de matematică. Concursuri internaţionale, Vol. II, Studis Publishing House, Iaşi, 2013.
- [6] A. Precupanu, Bazele analizei matematice, Ed. Universității "Alexandru Ioan Cuza", Iași, 1993.
- [7] https://math.stackexchange.com/questions/2514778/toeplitz-theorem (Consulted on 27.07.2023)