Romanian Mathematical Magazine
 Web: http://www.ssmrmh.ro
 The Author. This article is published with open access

A classical approach in the study of the convergence of the Cauchy product of two series using Toeplitz's theorem

Gabriel Brehuescu- Romania ${ }^{\text {I }}$

Abstract. In this article, we will prove Toeplitz's theorem and some fundamental mathematical results that involve it.

Keywords: Double sequence, Toeplitz's transformation, Cauchy's product, Mertens, Abel.

1 Introduction

Theorem 1.1 (Toeplitz) ${ }^{2}$ Let $\left\{a_{n, k}: n \in \mathbb{N}^{*}, 1 \leqslant k \leqslant n\right\}$ be a double sequence of real numbers with the following properties:
(i) $\lim _{n \rightarrow \infty} a_{n, k}=0$, for all positive integers k;
(ii) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{n, k}=1$;
(iii) there exists $c>0$ such that $\sum_{k=1}^{n}\left|a_{n, k}\right|<c$, for all positive integers n.

Then, for any sequence $\left(x_{n}\right)_{n \geqslant 1}$ of real numbers which is convergent, the sequence $\left(y_{n}\right)_{n \geqslant 1}$, defined by $y_{n}=\sum_{k=1}^{n} a_{n, k} x_{k}$, for each $n \in \mathbb{N}^{*}$, is also convergent and $\lim _{n \rightarrow \infty} y_{n}=$ $\lim _{n \rightarrow \infty} x_{n}$

Proof. Firstly, we consider that the sequence $\left(x_{n}\right)_{n \geqslant 1}$ is constant, i.e there exists $\alpha \in \mathbb{R}$ such that $x_{n}=\alpha$, for all $n \in \mathbb{N}^{*}$. Then:

$$
y_{n}=\alpha \sum_{k=1}^{n} a_{n, k}
$$

for all $n \in \mathbb{N}^{*}$. In virtue of $(i i)$, we get $\lim _{n \rightarrow \infty} y_{n}=\alpha=\lim _{n \rightarrow \infty} x_{n}$.
Now, we consider $\lim _{n \rightarrow \infty} x_{n}=0$. Take an arbitrary $\varepsilon>0$. Then, since the previous assumption, it results that there exists $n_{\varepsilon}^{1} \in \mathbb{N}^{*}$ such that for all integers $n \geqslant n_{\varepsilon}^{1}$ we have $\left|x_{n}\right|<\frac{\varepsilon}{2 c}$. Furthermore, from (iii) we have

[^0]\[

$$
\begin{equation*}
\sum_{k=n_{\varepsilon}^{1}}^{n}\left|a_{n, k}\right| \leqslant \sum_{k=1}^{n}\left|a_{n, k}\right|<c \tag{1}
\end{equation*}
$$

\]

Since $\left(x_{n}\right)_{n \geqslant 1}$ is convergent we have that $\left(x_{n}\right)_{n \geqslant 1}$ is bounded, so there exists $M>0$ such that for all $n \in \mathbb{N}^{*},\left|x_{n}\right|<M$. Using the hypothesis (i), we conclude that for all $k \in \overline{1, n_{\varepsilon}^{1}-1}$, we get $\lim _{n \rightarrow \infty} a_{n, k}=0$. Consequently, there exists $n_{\varepsilon, k} \in \mathbb{N}^{*}$, with $k \in \overline{1, n_{\varepsilon}^{1}-1}$ such that

$$
\begin{equation*}
\left|a_{n, k}\right|<\frac{\varepsilon}{2 M\left(n_{\varepsilon}^{1}-1\right)}, \tag{2}
\end{equation*}
$$

for all integers $n \geqslant n_{\varepsilon, k}$. Summing up the previous inequalities, we get

$$
\begin{equation*}
\sum_{k=1}^{n_{\varepsilon}^{1}-1}\left|a_{n, k}\right|<\frac{\varepsilon}{2 M} \tag{3}
\end{equation*}
$$

for all integers $n \geqslant n_{\varepsilon}^{2}:=\max \left\{n_{\varepsilon, k}: k \in \overline{1, n_{\varepsilon}^{1}-1}\right\}$
So, using the previous relations, we have

$$
\left|y_{n}\right| \leqslant \sum_{k=1}^{n}\left|a_{n, k}\right|\left|x_{k}\right|=\sum_{k=1}^{n_{\varepsilon}^{1}-1}\left|a_{n, k}\right|\left|x_{k}\right|+\sum_{k=n_{\varepsilon}^{1}}^{n}\left|a_{n, k}\right|\left|x_{k}\right| \leqslant M \frac{\varepsilon}{2 M}+c \frac{\varepsilon}{2 c}=\varepsilon
$$

for all integers $n \geqslant n_{\varepsilon}:=\max \left\{n_{\varepsilon}^{1}, n_{\varepsilon}^{2}\right\}$. Hence, $\lim _{n \rightarrow \infty} y_{n}=0$.
If $\lim _{n \rightarrow \infty} x_{n}=a \in \mathbb{R}$, then the sequence $\left(x_{n}-a\right)_{n \geqslant 1}$ converges to 0 and from previous considerations we obtain that the sequence $\left(z_{n}\right)_{n \geqslant 1}$, defined by $z_{n}=\sum_{k=1}^{n} a_{n, k}\left(x_{n}-a\right)$, for each positive integers n, also converges to 0 . Hence, $y_{n}=z_{n}+a \sum_{k=1}^{n} a_{n, k}$, for each positive integers n, and $\lim _{n \rightarrow \infty} y_{n}=0+a \cdot 1=a$.
Remark 1.1. If $\lim _{n \rightarrow \infty} x_{n}=0$, then the condition (ii) can be discarded.
Remark 1.2. If we consider $a_{n, k}>0$, for all $n \in \mathbb{N}^{*}$ and for all $1 \leqslant k \leqslant n$, then for any sequence $\left(x_{n}\right)_{n \geqslant 1}$ with $\lim _{n \rightarrow \infty} x_{n}=\infty$, we have $\lim _{n \rightarrow \infty} y_{n}=\infty$.

Proof. Let $\left(x_{n}\right)_{n \geqslant 1}$ with $x_{n} \rightarrow \infty$. Without loss of generality, we can suppose that all terms of the sequence $\left(x_{n}\right)_{n \geqslant 1}$ are strictly positive. Taking an arbitrary $\varepsilon>0$, since $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{n, k}=1$ it follows that there exists $n_{\varepsilon}^{1} \in \mathbb{N}^{*}$ such that for all integers $n \geqslant n_{\varepsilon}^{1}$ we get

$$
\sum_{k=1}^{n} a_{n, k}<\frac{1}{3}
$$

Since $\lim _{n \rightarrow \infty} x_{n}=\infty$ it follows that the sequence $\left(x_{n}\right)_{n \geqslant 1}$ is unbounded. So, there exists $n_{\varepsilon}^{2} \in \mathbb{N}^{*}$ such that for all integers $n \geqslant n_{\varepsilon}^{2}$ we have $x_{n}>3 \varepsilon$.

Denote $n_{\varepsilon}^{3}:=\max \left\{n_{\varepsilon}^{1}, n_{\varepsilon}^{2}\right\}$. From hypothesis (i) we can deduce

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n_{\varepsilon}^{3}} a_{n, k} x_{k}=0
$$

Therefore, there exists $n_{\varepsilon}>n_{\varepsilon}^{3}$ thereby

$$
\left|\sum_{k=1}^{n_{\varepsilon}^{3}} a_{n, k} x_{k}\right|<\frac{\varepsilon}{2}
$$

for all integers $n \geqslant n_{\varepsilon}$. Finally, we have

$$
\begin{aligned}
& \sum_{k=1}^{n} a_{n, k} x_{k}=\sum_{k=1}^{n_{\varepsilon}^{3}} a_{n, k} x_{k}+\sum_{k=n_{\varepsilon}^{3}+1}^{n} a_{n, k} x_{k}>-\frac{\varepsilon}{2}+3 \varepsilon \sum_{k=n_{\varepsilon}^{3}+1}^{n} a_{n, k}= \\
& =-\frac{\varepsilon}{2}+3 \varepsilon\left(\sum_{k=1}^{n} a_{n, k}-\sum_{k=1}^{n_{\varepsilon}^{3}} a_{n, k}\right)>-\frac{\varepsilon}{2}+3 \varepsilon\left(\sum_{k=1}^{n} a_{n, k}-\frac{1}{3}\right)
\end{aligned}
$$

for all integers $n \geqslant n_{\varepsilon}$. Using the condition (ii), we have

$$
\lim _{n \rightarrow \infty}\left[-\frac{\varepsilon}{2}+3 \varepsilon\left(\sum_{k=1}^{n} a_{n, k}-\frac{1}{3}\right)\right]=\frac{3 \varepsilon}{2}
$$

Consequently, there exists $k_{\varepsilon}>n_{\varepsilon}$ such that

$$
\left|-\frac{\varepsilon}{2}+3 \varepsilon\left(\sum_{k=1}^{n} a_{n, k}-\frac{1}{3}\right)-\frac{3 \varepsilon}{2}\right|<\frac{\varepsilon}{2}
$$

for all integers $n \geqslant k_{\varepsilon}$, which implies

$$
-\frac{\varepsilon}{2}+3 \varepsilon\left(\sum_{k=1}^{n} a_{n, k}-\frac{1}{3}\right)>\varepsilon
$$

for all $n \geqslant k_{\varepsilon}$. Hence, we get

$$
y_{n}=\sum_{k=1}^{n} a_{n, k} x_{k}>\varepsilon
$$

for all integers $n \geqslant k_{\varepsilon}$, from where we deduce $\lim _{n \rightarrow \infty} y_{n}=\infty$.
Remark 1.3. If we replace the condition (ii) with $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{n, k}=l \in \mathbb{R}$, then $\lim _{n \rightarrow \infty} y_{n}=$ $l \cdot \lim _{n \rightarrow \infty} x_{n}$

2 Main theoretical results

Corollary 2.1 (Cesìro mean Convergence theorem) ${ }^{3}$ Let $\left(x_{n}\right)_{n \geqslant 1}$ be a sequence of real numbers and $\left(\bar{x}_{n}\right)_{n \geqslant 1}$ defined by $\bar{x}_{n}=\frac{1}{n} \sum_{k=1}^{n} x_{k}$, for all $n \in \mathbb{N}^{*}$. If the sequence $\left(x_{n}\right)_{n \geqslant 1}$ is convergent and $\lim _{n \rightarrow \infty} x_{n}=x \in \mathbb{R}$, then $\left(\bar{x}_{n}\right)_{n \geqslant 1}$ is also convergent and $\lim _{n \rightarrow \infty} \bar{x}_{n}=x$.

Proof. Let us consider the double sequence $\left(a_{n, k}\right)_{n, k \geqslant 1}$ defined by $a_{n, k}=\frac{1}{n}$, for $1 \leqslant k \leqslant n$, and $a_{n, k}=0$ otherwise, for all positive integers n. Obviously, for each $k \in \mathbb{N}^{*}$, we get $\left(a_{n, k}\right) \underset{n \rightarrow \infty}{\rightarrow} 0$ and $\sum_{k=1}^{n} a_{n, k}=1$, for all positive integers n. The conclusion now follows from Toeplitz's theorem.

Remark 2.1. The previous result remains valid even if the sequence $\left(x_{n}\right)_{n \geqslant 1}$ has an infinite limit.

Corollary 2.2 Let $\left(x_{n}\right)_{n \geqslant 1}$ be a sequence of positive numbers and $\left(\bar{x}_{n}\right)_{n \geqslant 1}$ defined by

$$
\bar{x}_{n}=\frac{n}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}}
$$

for all positive integers n. If $\left(x_{n}\right)_{n \geqslant 1}$ has limit, then $\left(\bar{x}_{n}\right)_{n \geqslant 1}$ also has limit and $\lim _{n \rightarrow \infty} \bar{x}_{n}=$ $\lim _{n \rightarrow \infty} x_{n}$.

Proof. Let $\lim _{n \rightarrow \infty} x_{n} \in \mathbb{R}_{+}^{*}$. Let us consider the lower triangular double sequence $\left(a_{n, k}\right)_{n, k \geqslant 1}$ defined by

$$
a_{n, k}=\frac{\frac{1}{x_{k}}}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}}
$$

for $1 \leqslant k \leqslant n$ and $a_{n, k}=0$, otherwise, for all positive integers n. Since $\left(x_{n}\right)_{n \geqslant 1}$ is convergent we have that $\left(x_{n}\right)_{n \geqslant 1}$ is bounded, so there exists $M>0$ such that for all $n \in \mathbb{N}^{*}, 0<x_{n}<M$. Then

$$
\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}>\frac{n}{M}
$$

for all positive integers n, which implies $0<a_{n, k}<\frac{M}{n x_{k}}$, for all positive integers n and $1 \leqslant k \leqslant n$. Since $\lim _{n \rightarrow \infty} \frac{M}{n x_{k}}=0$ it follows that for all $k \in \mathbb{N}^{*}$ we have $\lim _{n \rightarrow \infty} a_{n, k}=0$.

Furthermore, for all $n \in \mathbb{N}^{*}$ we have

$$
\sum_{k=1}^{n} a_{n, k}=\sum_{k=1}^{n} \frac{\frac{1}{x_{k}}}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}}=1
$$

[^1]and for $c=2>0$ we have $\sum_{k=1}^{n}\left|a_{n, k}\right|<c$, for all positive integers n. Applying Toeplitz's theorem, we get:
$$
\lim _{n \rightarrow \infty} \bar{x}_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{n, k} x_{k}=\lim _{n \rightarrow \infty} x_{n}
$$

Next, we consider $\lim _{n \rightarrow \infty} x_{n}=\infty$, which there is equivalent to $\lim _{n \rightarrow \infty} \frac{1}{x_{n}}=0$. Then, in virtue of Corollary 2.1, we have

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}}{n}=0
$$

or equivalent

$$
\lim _{n \rightarrow \infty} \frac{n}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}}=\infty
$$

Remark 2.2. We know the means inequality

$$
\frac{n}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}} \leqslant \sqrt[n]{x_{1} x_{2} \ldots x_{n}} \leqslant \frac{x_{1}+x_{2}+\ldots+x_{n}}{n}
$$

for all $x_{n}>0, n \in \mathbb{N}^{*}$. Using Corollary 2.1 and Corollary 2.2, we obtain that if $\left(x_{n}\right)_{n \geqslant 1}$ has limit, then

$$
\lim _{n \rightarrow \infty} \sqrt[n]{x_{1} x_{2} \ldots x_{n}}=\lim _{n \rightarrow \infty} x_{n}
$$

Corollary 2.35 Let $\left(a_{n}\right)_{n \geqslant 0}$ and $\left(b_{n}\right)_{n \geqslant 0}$ be two sequences of real numbers with the following properties:
(i) $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=0$
(ii) $\forall n \in \mathbb{N}^{*}, \exists c>0$ such that $\sum_{k=1}^{n}\left|a_{k}\right|<c$.

Then

$$
\lim _{n \rightarrow \infty}\left(a_{1} b_{n}+a_{2} b_{n-1}+\ldots+a_{n} b_{1}\right)=0
$$

Proof. Let be the double sequence $\left(a_{n, k}\right)_{n, k \geqslant 1}$ defined by

$$
a_{n, k}=a_{n-k+1}
$$

for $1 \leqslant k \leqslant n$ and $a_{n, k}=0$ otherwise, for all positive integers n. Then:

$$
a_{1} b_{n}+a_{2} b_{n-1}+\ldots+a_{n} b_{1}=\sum_{k=1}^{n} a_{n, k} b_{k}
$$

The sequence $\left(a_{n, k}\right)$ satisfies the first and third conditions of the Toeplitz's theorem and, according to Remark 1.1, the second condition can be discarded because $\lim _{n \rightarrow \infty} b_{n}=0$.

The conclusion now follows from Toeplitz's theorem.

[^2]Corollary 2.4 ${ }^{6}$ Let $\left(a_{n}\right)_{n \geqslant 1},\left(b_{n}\right)_{n \geqslant 1}$ be sequences convergent to a, respectively $b(a, b \in \mathbb{R})$. Then

$$
\lim _{n \rightarrow \infty} \frac{a_{1} b_{n}+a_{2} b_{n-1}+\ldots+a_{n} b_{1}}{n}=a b
$$

Proof. Let be the sequence $\left(c_{n}\right)_{n \geqslant 1}$ defined by:

$$
c_{n}=\frac{1}{n} \sum_{k=1}^{n} a_{k} b_{n-k+1}
$$

for all positive integers n. Firstly, we consider $b=0$. Let be double sequence $\left(a_{n, k}\right)_{n, k \geqslant 1}$ defined by

$$
a_{n, k}=\frac{1+b_{n-k+1}}{n}
$$

for $1 \leqslant k \leqslant n$ and $a_{n, k}=0$ otherwise, for all positive integers n. Since $\left(b_{n}\right)_{n \geqslant 1}$ is convergent we have that $\left(b_{n}\right)_{n \geqslant 1}$ is bounded. Consequently, for all $k \in \mathbb{N}^{*}$, we have $\lim _{n \rightarrow \infty} a_{n, k}=0$ and for all $n \in \mathbb{N}^{*}$:

$$
\begin{equation*}
\sum_{k=1}^{n} a_{n, k}=\sum_{k=1}^{n} \frac{1+b_{n-k+1}}{n}=1+\frac{1}{n} \sum_{k=1}^{n} b_{k} \tag{4}
\end{equation*}
$$

Therefore, in virtue of Corollary 2.1, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} b_{k}=\lim _{n \rightarrow \infty} b_{n}=0 \tag{5}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{n, k}=1 \tag{6}
\end{equation*}
$$

Furthermore, there exists a constant $K>0$ such that for all $n \in \mathbb{N}^{*}$ we have $\left|1+b_{n}\right|<$ K. Then, for all $n \geqslant 1$, we have

$$
\begin{equation*}
\sum_{k=1}^{n}\left|a_{n, k}\right|=\sum_{k=1}^{n} \frac{\left|1+b_{n-k+1}\right|}{n}<\frac{n K}{n}=K \tag{7}
\end{equation*}
$$

Hence, applying Toeplitz's theorem, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(1+b_{n-k+1}\right) a_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{n, k} a_{k}=\lim _{n \rightarrow \infty} a_{n}=a \tag{8}
\end{equation*}
$$

and using $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} a_{k}=a$, we obtain

$$
\begin{equation*}
c_{n}=\frac{1}{n} \sum_{k=1}^{n}\left(1+b_{n-k+1}\right) a_{k}-\frac{1}{n} \sum_{k=1}^{n} a_{k} \underset{n \rightarrow \infty}{\rightarrow} 0 \tag{9}
\end{equation*}
$$

Now, considering the general case, we write c_{n} as

[^3]$$
c_{n}=\frac{1}{n} \sum_{k=1}^{n} a_{n-k+1}\left(b_{k}-b\right)+b \cdot \frac{1}{n} \sum_{k=1}^{n} a_{k}, \forall n \geqslant 1
$$

Therefore, in virtue of previous relations, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} a_{n-k+1}\left(b_{k}-b\right)=0 \tag{10}
\end{equation*}
$$

Furthermore, using $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} a_{k}=a$, we obtain:

$$
\lim _{n \rightarrow \infty} c_{n}=0+a b=a b
$$

and this result is proved.
Lemma 2.1.7 Let $\left(x_{n}\right)_{n \geqslant 1}$ and $\left(y_{n}\right)_{n \geqslant 1}$ be two sequences of real numbers and $s_{n}=$ $\sum_{k=1}^{n} x_{k}, \forall n \in \mathbb{N}^{*}$. Then, for all $n \in \mathbb{N}^{*}$, we get:

$$
\sum_{k=1}^{n} x_{k} y_{k}=s_{n} y_{n+1}-\sum_{k=1}^{n} s_{k}\left(y_{k+1}-y_{k}\right)
$$

Proof. Let $s_{0}=0$. For each integers $k \geqslant 1$ we have $s_{k}-s_{k-1}=x_{k}$. Hence:

$$
\begin{gathered}
\sum_{k=1}^{n} x_{k} y_{k}=\sum_{k=1}^{n}\left(s_{k}-s_{k-1}\right) y_{k}= \\
=y_{1}\left(s_{1}-s_{0}\right)+y_{2}\left(s_{2}-s_{1}\right)+\ldots+y_{n}\left(s_{n}-s_{n-1}\right)= \\
=s_{1}\left(y_{1}-y_{2}\right)+\ldots+s_{n-1}\left(y_{n-1}-y_{n}\right)+s_{n}\left(y_{n}-y_{n+1}\right)+s_{n} y_{n+1}= \\
=s_{n} y_{n+1}-\sum_{k=1}^{n} s_{k}\left(y_{k+1}-y_{k}\right)
\end{gathered}
$$

Corollary 2.5 (KRONECKER) $]^{8}$ Let $\left(a_{n}\right)_{n \geqslant 1}$ and $\left(b_{n}\right)_{n \geqslant 1}$ be two sequences of real numbers such that $\left(b_{n}\right)_{n \geqslant 1}$ is an increasing sequence of nonnegative real numbers with $\lim _{n \rightarrow \infty} b_{n}=\infty$. If the series $\sum_{n=1}^{\infty} a_{n}$ converges, then

$$
\lim _{n \rightarrow \infty} \frac{1}{b_{n}} \sum_{k=1}^{n} b_{k} a_{k}=0
$$

Proof. Using Lemma 2.1, we get

$$
\begin{equation*}
\frac{1}{b_{n}} \sum_{k=1}^{n} a_{k} b_{k}=s_{n}-\frac{1}{b_{n}} \sum_{k=1}^{n-1}\left(b_{k+1}-b_{k}\right) s_{k} \tag{11}
\end{equation*}
$$

[^4]where $s_{n}=\sum_{k=1}^{n} a_{k}$, for $n \in \mathbb{N}^{*}$, denotes the sequence of partial sums.
Let us consider the double sequence $\left(a_{n, k}\right)_{n, k \geqslant 1}$ defined by
$$
a_{n, k}=\frac{b_{k+1}-b_{k}}{b_{n}}
$$
for $1 \leqslant k \leqslant n$ and $a_{n, k}=0$ otherwise, for all positive integers n. For all integers $n \geqslant 1$, we have
\[

$$
\begin{equation*}
\sum_{k=1}^{n-1} a_{n, k}=\sum_{k=1}^{n-1} \frac{b_{k+1}-b_{k}}{b_{n}}=\frac{b_{n}-b_{1}}{b_{n}} \underset{n \rightarrow \infty}{\rightarrow} 1 \tag{12}
\end{equation*}
$$

\]

and for each $k \in \mathbb{N}^{*}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n, k}=\lim _{n \rightarrow \infty} \frac{b_{k+1}-b_{k}}{b_{n}}=0 \tag{13}
\end{equation*}
$$

because $\lim _{n \rightarrow \infty} b_{n}=\infty$. Furthermore, we have

$$
\begin{equation*}
\sum_{k=1}^{n-1}\left|a_{n, k}\right|=\sum_{k=1}^{n-1} \frac{b_{k+1}-b_{k}}{b_{n}}=\frac{b_{n}-b_{1}}{b_{n}}<1 \tag{14}
\end{equation*}
$$

Hence, applying Toeplitz's theorem, we get:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{b_{n}} \sum_{k=1}^{n-1}\left(b_{k+1}-b_{k}\right) s_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n-1} a_{n, k} s_{k}=\lim _{n \rightarrow \infty} s_{n} \tag{15}
\end{equation*}
$$

and using (11), we obtain

$$
\lim _{n \rightarrow \infty} \frac{1}{b_{n}} \sum_{k=1}^{n} b_{k} a_{k}=0
$$

A result equivalent to the previous one is the following
Corollary 2.6. Let $\left(a_{n}\right)_{n \geqslant 1}$ and $\left(b_{n}\right)_{n \geqslant 1}$ be two sequences of real numbers such that $\left(b_{n}\right)_{n \geqslant 1}$ is an increasing sequence of non-negative real numbers with $\lim _{n \rightarrow \infty} b_{n}=\infty$. If the series $\sum_{n=1}^{\infty} \frac{a_{n}}{b_{n}}$ converges, then $\lim _{n \rightarrow \infty} \frac{1}{b_{n}} \sum_{k=1}^{n} a_{k}=0$.

In the following, we will state and demonstrate some results regarding the study of the convergence of the product of numerical series. Firstly, we start with the definition of a fundamental mathematical concept, namely the Cauchy product of two series. For more details in the study of infinite series, see [3] or 6].
Definition 2.1 (CAUCHY product of two infinite series). Let $\sum_{n=1}^{\infty} x_{n}$ and $\sum_{n=1}^{\infty} y_{n}$ be two infinite series. The CAUCHY product of these series is defined by $\sum_{n=1}^{\infty} z_{n}$, where the sequence $\left(z_{n}\right)_{n \geqslant 0}$ is defined by $z_{n}=\sum_{k=1}^{n} x_{k} y_{n-k+1}$, for all $n \in \mathbb{N}^{*}$.

Next, we will state and prove two fundamental results that provide sufficient conditions for the convergence of the Cauchy product.
Theorem 2.1 (Mertens) ${ }^{9}$ Let $\sum_{n=1}^{\infty} x_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be two convergent series. Suppose that at least one of the series is absolutely convergent. Then the product in Cauchy's form, $\sum_{n=1}^{\infty} z_{n}$, is convergent and:

$$
\sum_{n=1}^{\infty} z_{n}=\left(\sum_{n=1}^{\infty} x_{n}\right)\left(\sum_{n=1}^{\infty} y_{n}\right)
$$

Proof. Let A, respectively B be the sums of series $\sum_{n=1}^{\infty} x_{n}$, respectively $\sum_{n=1}^{\infty} y_{n}$. Let us assume that $\sum_{n=1}^{\infty} y_{n}$ is absolutely convergent. Then, there exists $K>0$ such that:

$$
\begin{equation*}
\sum_{k=1}^{n}\left|y_{n}\right|<K, \forall n \in \mathbb{N} \tag{16}
\end{equation*}
$$

Also let:

$$
A_{n}=\sum_{k=1}^{n} x_{k}, B_{n}=\sum_{k=1}^{n} y_{k}, \text { and } C_{n}=\sum_{k=1}^{n} z_{k} \forall n \in \mathbb{N}^{*},
$$

be the sequences of partial sums of $\sum_{n=1}^{\infty} x_{n}, \sum_{n=1}^{\infty} x_{n}$, respectively $\sum_{n=1}^{\infty} z_{n}$. Ordering the terms of $\left(C_{n}\right)_{n \geqslant 1}$ by the $\left(y_{n}\right)_{n \geqslant 1}$ terms, we obtain that:

$$
\begin{equation*}
C_{n}=y_{1} A_{n}+y_{2} A_{n-1}+\ldots y_{n} A_{1} \tag{17}
\end{equation*}
$$

for all positive integers n. Since $\lim _{n \rightarrow \infty} A_{n}=A$ it follows that there exists a sequence $\left(\alpha_{n}\right)_{n \geqslant 1}$ convergent to 0 such that $A_{n}+\alpha_{n}=A, \forall n \in \mathbb{N}^{*}$. Consequently, we can rewrite C_{n} as:

$$
\begin{equation*}
C_{n}=A B_{n}-\left(y_{1} \alpha_{n}+y_{2} \alpha_{n-1}+\ldots+y_{n} \alpha_{1}\right) \tag{18}
\end{equation*}
$$

for all positive integers n. From $\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} \alpha_{n}=0$ and condition 16 , we can use Corollary 2.3 and get that:

$$
\lim _{n \rightarrow \infty}\left(y_{1} \alpha_{n}+y_{2} \alpha_{n-1}+\ldots+y_{n} \alpha_{1}\right)=0
$$

which implies $\lim _{n \rightarrow \infty} C_{n}=A B$ and this concludes the proof of the theorem.
Theorem 2.2 (ABEL) $\sqrt[10]{10}$ Let $\sum_{n=1}^{\infty} x_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be two convergent series. Suppose that the product in CAUCHY's form, $\sum_{n=0}^{\infty} z_{n}$, is convergent. Then:

$$
\sum_{n=1}^{\infty} z_{n}=\left(\sum_{n=1}^{\infty} x_{n}\right)\left(\sum_{n=1}^{\infty} y_{n}\right) .
$$

[^5]Proof. Let A, B, respectively C the sums of series $\sum_{n=1}^{\infty} x_{n}, \sum_{n=1}^{\infty} y_{n}$, respectively $\sum_{n=1}^{\infty} z_{n}$. Also let:

$$
A_{n}=\sum_{k=1}^{n} x_{k}, B_{n}=\sum_{k=1}^{n} y_{k}, \text { and } C_{n}=\sum_{k=1}^{n} z_{k} \forall n \in \mathbb{N}
$$

be the sequences of partial sums of $\sum_{n=1}^{\infty} x_{n}, \sum_{n=1}^{\infty} x_{n}$, respectively $\sum_{n=1}^{\infty} z_{n}$.
Firstly, we have

$$
\begin{gathered}
C_{1}+C_{2}+\ldots+C_{n}= \\
=x_{1} y_{1}+\left(x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{1}\right)+\ldots+\sum_{k=1}^{n}\left(x_{1} y_{k}+x_{2} y_{k-1}+\ldots+x_{k} y_{1}\right)= \\
=\sum_{k=1}^{n} \sum_{i=1}^{k} \sum_{j=1}^{i} x_{j} y_{i-j+1}=A_{1} B_{n}+A_{2} B_{n-1}+\ldots+A_{n} B_{1}
\end{gathered}
$$

From Corollary 2.3 we have $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} C_{k}=C$ and from Corollary 2.6 we have

$$
\lim _{n \rightarrow \infty} \frac{A_{1} B_{n}+A_{2} B_{n-1}+\ldots+A_{n} B_{1}}{n}=A B
$$

But we also have that

$$
C_{1}+C_{2}+\ldots+C_{n}=A_{1} B_{n}+A_{2} B_{n-1}+\ldots+A_{n} B_{1}
$$

so $C=A B$ and this concludes the proof of the theorem.

References

[1] T. Andreescu, C. Mortici, M. Tetiva, Mathematical Bridges, Springer Publishing House, New York, 2017.
[2] D.M. Bătineţu, Probleme de matematică pentru treapta a II-a de liceu, Albatros Publishing House, Bucharest, 1979.
[3] G.M Fihtenholtz, Curs de calcul diferential şi integral, Technical Publishing House, Bucharest, Vol. 2, 1964.
[4] M. Flygare, Some Properties of Infinite Series (Bachelor thesis), Karlstads universitetFaculty of Technology and Science, 2012.
[5] V. Pop (coord.), Teme şi probleme pentru concursurile studenţeşti de matematică. Concursuri internaţionale, Vol. II, Studis Publishing House, Iaşi, 2013.
[6] A. Precupanu, Bazele analizei matematice, Ed. Universităţii „Alexandru Ioan Cuza", Iaşi, 1993.
[7] https://math.stackexchange.com/questions/2514778/toeplitz-theorem (Consulted on 27.07.2023)

[^0]: ${ }^{1}$ Student, "Alexandru Ioan Cuza" University of Iaşi; brehuescu.gabriel14@gmail.com
 ${ }^{2}$ The proof of this result can be found in [1, pp. 155-156], [5, pp. 12-13], [2, pp. 502-504], or [4. pp. 37-39]. Furthermore, in the proof presented in this article I used informations from https: //math.stackexchange.com/questions/2514778/toeplitz-theorem

[^1]: ${ }^{3}$ See [2, pp. 194-195, pp. 198] or [4] pp. 39]
 ${ }^{4}$ See [2, pp. 198-199]

[^2]: ${ }^{5}$ See [2, pp. 505] or [4, pp. 40]

[^3]: ${ }^{6}$ See [4, pp. 40-41] or [5, pp. 14]

[^4]: ${ }^{7}$ See [6, pp. 98]
 ${ }^{8}$ See 3]

[^5]: ${ }^{9}$ See [3] or [4, pp. 46-47] and for a different approach see [6, pp. 114-116]
 ${ }^{10}$ See [3] or [4, pp. 47-48]

