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1 Introduction

Theorem 1.1 (Toeplitz).2 Let {an,k : n ∈ N∗, 1 ⩽ k ⩽ n} be a double sequence of real
numbers with the following properties:

(i) lim
n→∞

an,k = 0, for all positive integers k;

(ii) lim
n→∞

n∑
k=1

an,k = 1;

(iii) there exists c > 0 such that
n∑

k=1

|an,k| < c, for all positive integers n.

Then, for any sequence (xn)n⩾1 of real numbers which is convergent, the sequence

(yn)n⩾1, defined by yn =
n∑

k=1

an,kxk, for each n ∈ N∗, is also convergent and lim
n→∞

yn =

lim
n→∞

xn

Proof. Firstly, we consider that the sequence (xn)n⩾1 is constant, i.e there exists α ∈ R
such that xn = α, for all n ∈ N∗. Then:

yn = α
n∑

k=1

an,k

for all n ∈ N∗. In virtue of (ii), we get lim
n→∞

yn = α = lim
n→∞

xn.

Now, we consider lim
n→∞

xn = 0. Take an arbitrary ε > 0. Then, since the previous

assumption, it results that there exists n1
ε ∈ N∗ such that for all integers n ⩾ n1

ε we have
|xn| < ε

2c
. Furthermore, from (iii) we have

1Student, ”Alexandru Ioan Cuza” University of Iaşi; brehuescu.gabriel14@gmail.com
2The proof of this result can be found in [1, pp. 155-156], [5, pp. 12-13], [2, pp. 502-504], or

[4, pp. 37-39]. Furthermore, in the proof presented in this article I used informations from https:

//math.stackexchange.com/questions/2514778/toeplitz-theorem
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n∑
k=n1

ε

|an,k| ⩽
n∑

k=1

|an,k| < c (1)

Since (xn)n⩾1 is convergent we have that (xn)n⩾1 is bounded, so there exists M > 0
such that for all n ∈ N∗, |xn| < M . Using the hypothesis (i), we conclude that for all
k ∈ 1, n1

ε − 1, we get lim
n→∞

an,k = 0. Consequently, there exists nε,k ∈ N∗, with k ∈ 1, n1
ε − 1

such that
|an,k| <

ε

2M (n1
ε − 1)

, (2)

for all integers n ⩾ nε,k. Summing up the previous inequalities, we get

n1
ε−1∑
k=1

|an,k| <
ε

2M
(3)

for all integers n ⩾ n2
ε := max

{
nε,k : k ∈ 1, n1

ε − 1
}

So, using the previous relations, we have

|yn| ⩽
n∑

k=1

|an,k| |xk| =
n1
ε−1∑
k=1

|an,k| |xk|+
n∑

k=n1
ε

|an,k| |xk| ⩽ M
ε

2M
+ c

ε

2c
= ε

for all integers n ⩾ nε := max {n1
ε, n

2
ε}. Hence, lim

n→∞
yn = 0.

If lim
n→∞

xn = a ∈ R, then the sequence (xn − a)n⩾1 converges to 0 and from previous

considerations we obtain that the sequence (zn)n⩾1, defined by zn =
n∑

k=1

an,k (xn − a), for

each positive integers n, also converges to 0. Hence, yn = zn + a
n∑

k=1

an,k, for each positive

integers n, and lim
n→∞

yn = 0 + a · 1 = a.

Remark 1.1. If lim
n→∞

xn = 0, then the condition (ii) can be discarded.

Remark 1.2. If we consider an,k > 0, for all n ∈ N∗ and for all 1 ⩽ k ⩽ n, then for any
sequence (xn)n⩾1 with lim

n→∞
xn = ∞, we have lim

n→∞
yn = ∞.

Proof. Let (xn)n⩾1 with xn → ∞. Without loss of generality, we can suppose that all
terms of the sequence (xn)n⩾1 are strictly positive. Taking an arbitrary ε > 0, since

lim
n→∞

n∑
k=1

an,k = 1 it follows that there exists n1
ε ∈ N∗ such that for all integers n ⩾ n1

ε we

get n∑
k=1

an,k <
1

3

Since lim
n→∞

xn = ∞ it follows that the sequence (xn)n⩾1 is unbounded. So, there exists

n2
ε ∈ N∗ such that for all integers n ⩾ n2

ε we have xn > 3ε.
Denote n3

ε := max {n1
ε, n

2
ε}. From hypothesis (i) we can deduce
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lim
n→∞

n3
ε∑

k=1

an,kxk = 0

Therefore, there exists nε > n3
ε thereby∣∣∣∣∣∣

n3
ε∑

k=1

an,kxk

∣∣∣∣∣∣ < ε

2

for all integers n ⩾ nε. Finally, we have

n∑
k=1

an,kxk =

n3
ε∑

k=1

an,kxk +
n∑

k=n3
ε+1

an,kxk > −ε

2
+ 3ε

n∑
k=n3

ε+1

an,k =

= −ε

2
+ 3ε

 n∑
k=1

an,k −
n3
ε∑

k=1

an,k

 > −ε

2
+ 3ε

(
n∑

k=1

an,k −
1

3

)
for all integers n ⩾ nε. Using the condition (ii), we have

lim
n→∞

[
−ε

2
+ 3ε

(
n∑

k=1

an,k −
1

3

)]
=

3ε

2

Consequently, there exists kε > nε such that∣∣∣∣∣−ε

2
+ 3ε

(
n∑

k=1

an,k −
1

3

)
− 3ε

2

∣∣∣∣∣ < ε

2

for all integers n ⩾ kε, which implies

−ε

2
+ 3ε

(
n∑

k=1

an,k −
1

3

)
> ε

for all n ⩾ kε. Hence, we get

yn =
n∑

k=1

an,kxk > ε

for all integers n ⩾ kε, from where we deduce lim
n→∞

yn = ∞.

Remark 1.3. If we replace the condition (ii) with lim
n→∞

n∑
k=1

an,k = l ∈ R, then lim
n→∞

yn =

l · lim
n→∞

xn
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2 Main theoretical results

Corollary 2.1 (Cesàro mean convergence theorem).3 Let (xn)n⩾1 be a sequence of

real numbers and (x̄n)n⩾1 defined by x̄n =
1

n

n∑
k=1

xk, for all n ∈ N∗. If the sequence (xn)n⩾1

is convergent and lim
n→∞

xn = x ∈ R, then (x̄n)n⩾1 is also convergent and lim
n→∞

x̄n = x.

Proof. Let us consider the double sequence (an,k)n,k⩾1 defined by an,k = 1
n
, for 1 ⩽ k ⩽ n,

and an,k = 0 otherwise, for all positive integers n. Obviously, for each k ∈ N∗, we get

(an,k) →
n→∞

0 and
n∑

k=1

an,k = 1, for all positive integers n. The conclusion now follows from

Toeplitz’s theorem.

Remark 2.1. The previous result remains valid even if the sequence (xn)n⩾1 has an infinite
limit.

Corollary 2.2.4 Let (xn)n⩾1 be a sequence of positive numbers and (x̄n)n⩾1 defined by

x̄n =
n

1
x1

+ 1
x2

+ . . .+ 1
xn

for all positive integers n. If (xn)n⩾1 has limit, then (x̄n)n⩾1 also has limit and lim
n→∞

x̄n =

lim
n→∞

xn.

Proof. Let lim
n→∞

xn ∈ R∗
+. Let us consider the lower triangular double sequence (an,k)n,k⩾1

defined by

an,k =
1
xk

1
x1

+ 1
x2

+ . . .+ 1
xn

for 1 ⩽ k ⩽ n and an,k = 0, otherwise, for all positive integers n. Since (xn)n⩾1 is
convergent we have that (xn)n⩾1 is bounded, so there exists M > 0 such that for all
n ∈ N∗, 0 < xn < M . Then

1

x1

+
1

x2

+ . . .+
1

xn

>
n

M

for all positive integers n, which implies 0 < an,k < M
nxk

, for all positive integers n and

1 ⩽ k ⩽ n. Since lim
n→∞

M

nxk

= 0 it follows that for all k ∈ N∗ we have lim
n→∞

an,k = 0.

Furthermore, for all n ∈ N∗ we have
n∑

k=1

an,k =
n∑

k=1

1
xk

1
x1

+ 1
x2

+ . . .+ 1
xn

= 1

3See [2, pp. 194-195, pp. 198] or [4, pp. 39]
4See [2, pp. 198-199]
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and for c = 2 > 0 we have
n∑

k=1

|an,k| < c, for all positive integers n. Applying Toeplitz’s

theorem, we get:
lim
n→∞

x̄n = lim
n→∞

n∑
k=1

an,kxk = lim
n→∞

xn

Next, we consider lim
n→∞

xn = ∞, which there is equivalent to lim
n→∞

1

xn

= 0. Then, in

virtue of Corollary 2.1 , we have

lim
n→∞

1
x1

+ 1
x2

+ . . .+ 1
xn

n
= 0

or equivalent

lim
n→∞

n
1
x1

+ 1
x2

+ . . .+ 1
xn

= ∞

Remark 2.2. We know the means inequality
n

1
x1

+ 1
x2

+ . . .+ 1
xn

⩽ n
√
x1x2 . . . xn ⩽

x1 + x2 + . . .+ xn

n

for all xn > 0, n ∈ N∗. Using Corollary 2.1 and Corollary 2.2, we obtain that if (xn)n⩾1

has limit, then
lim
n→∞

n
√
x1x2 . . . xn = lim

n→∞
xn

Corollary 2.3.5 Let (an)n⩾0 and (bn)n⩾0 be two sequences of real numbers with the following
properties:

(i) lim
n→∞

an = lim
n→∞

bn = 0

(ii) ∀n ∈ N∗,∃c > 0 such that
n∑

k=1

|ak| < c.

Then
lim
n→∞

(a1bn + a2bn−1 + . . .+ anb1) = 0

Proof. Let be the double sequence (an,k)n,k⩾1 defined by

an,k = an−k+1

for 1 ⩽ k ⩽ n and an,k = 0 otherwise, for all positive integers n. Then:

a1bn + a2bn−1 + . . .+ anb1 =
n∑

k=1

an,kbk

The sequence (an,k) satisfies the first and third conditions of the Toeplitz’s theorem
and, according to Remark 1.1, the second condition can be discarded because lim

n→∞
bn = 0.

The conclusion now follows from Toeplitz’s theorem.

5See [2, pp. 505] or [4, pp. 40]
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Corollary 2.4.6 Let (an)n⩾1 , (bn)n⩾1 be sequences convergent to a, respectively b (a, b ∈ R).
Then

lim
n→∞

a1bn + a2bn−1 + . . .+ anb1
n

= ab

Proof. Let be the sequence (cn)n⩾1 defined by:

cn =
1

n

n∑
k=1

akbn−k+1

for all positive integers n. Firstly, we consider b = 0. Let be double sequence (an,k)n,k⩾1

defined by
an,k =

1 + bn−k+1

n

for 1 ⩽ k ⩽ n and an,k = 0 otherwise, for all positive integers n. Since (bn)n⩾1 is convergent
we have that (bn)n⩾1 is bounded. Consequently, for all k ∈ N∗, we have lim

n→∞
an,k = 0 and

for all n ∈ N∗ : n∑
k=1

an,k =
n∑

k=1

1 + bn−k+1

n
= 1 +

1

n

n∑
k=1

bk (4)

Therefore, in virtue of Corollary 2.1 , we have

lim
n→∞

1

n

n∑
k=1

bk = lim
n→∞

bn = 0 (5)

which implies

lim
n→∞

n∑
k=1

an,k = 1 (6)

Furthermore, there exists a constant K > 0 such that for all n ∈ N∗ we have |1 + bn| <
K. Then, for all n ⩾ 1, we have

n∑
k=1

|an,k| =
n∑

k=1

|1 + bn−k+1|
n

<
nK

n
= K (7)

Hence, applying Toeplitz’s theorem, we get

lim
n→∞

1

n

n∑
k=1

(1 + bn−k+1) ak = lim
n→∞

n∑
k=1

an,kak = lim
n→∞

an = a (8)

and using lim
n→∞

1

n

n∑
k=1

ak = a, we obtain

cn =
1

n

n∑
k=1

(1 + bn−k+1) ak −
1

n

n∑
k=1

ak →
n→∞

0 (9)

Now, considering the general case, we write cn as

6See [4, pp. 40-41] or [5, pp. 14]
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cn =
1

n

n∑
k=1

an−k+1 (bk − b) + b · 1
n

n∑
k=1

ak,∀n ⩾ 1

Therefore, in virtue of previous relations, we have

lim
n→∞

1

n

n∑
k=1

an−k+1 (bk − b) = 0 (10)

Furthermore, using lim
n→∞

1

n

n∑
k=1

ak = a, we obtain:

lim
n→∞

cn = 0 + ab = ab

and this result is proved.

Lemma 2.1.7 Let (xn)n⩾1 and (yn)n⩾1 be two sequences of real numbers and sn =
n∑

k=1

xk,∀n ∈ N∗. Then, for all n ∈ N∗, we get:

n∑
k=1

xkyk = snyn+1 −
n∑

k=1

sk (yk+1 − yk)

Proof. Let s0 = 0. For each integers k ⩾ 1 we have sk − sk−1 = xk. Hence:
n∑

k=1

xkyk =
n∑

k=1

(sk − sk−1) yk =

= y1 (s1 − s0) + y2 (s2 − s1) + . . .+ yn (sn − sn−1) =

= s1 (y1 − y2) + . . .+ sn−1 (yn−1 − yn) + sn (yn − yn+1) + snyn+1 =

= snyn+1 −
n∑

k=1

sk (yk+1 − yk)

Corollary 2.5 (Kronecker).8 Let (an)n⩾1 and (bn)n⩾1 be two sequences of real numbers
such that (bn)n⩾1 is an increasing sequence of nonnegative real numbers with lim

n→∞
bn = ∞.

If the series
∞∑
n=1

an converges, then

lim
n→∞

1

bn

n∑
k=1

bkak = 0

Proof. Using Lemma 2.1, we get

1

bn

n∑
k=1

akbk = sn −
1

bn

n−1∑
k=1

(bk+1 − bk) sk (11)

7See [6, pp. 98]
8See [3]
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where sn =
n∑

k=1

ak, for n ∈ N∗, denotes the sequence of partial sums.

Let us consider the double sequence (an,k)n,k⩾1 defined by

an,k =
bk+1 − bk

bn

for 1 ⩽ k ⩽ n and an,k = 0 otherwise, for all positive integers n. For all integers n ⩾ 1, we
have

n−1∑
k=1

an,k =
n−1∑
k=1

bk+1 − bk
bn

=
bn − b1

bn
→

n→∞
1 (12)

and for each k ∈ N∗,

lim
n→∞

an,k = lim
n→∞

bk+1 − bk
bn

= 0, (13)

because lim
n→∞

bn = ∞. Furthermore, we have
n−1∑
k=1

|an,k| =
n−1∑
k=1

bk+1 − bk
bn

=
bn − b1

bn
< 1 (14)

Hence, applying Toeplitz’s theorem, we get:

lim
n→∞

1

bn

n−1∑
k=1

(bk+1 − bk) sk = lim
n→∞

n−1∑
k=1

an,ksk = lim
n→∞

sn (15)

and using (11), we obtain

lim
n→∞

1

bn

n∑
k=1

bkak = 0

A result equivalent to the previous one is the following

Corollary 2.6. Let (an)n⩾1 and (bn)n⩾1 be two sequences of real numbers such that (bn)n⩾1

is an increasing sequence of non-negative real numbers with lim
n→∞

bn = ∞. If the series
∞∑
n=1

an
bn

converges, then lim
n→∞

1

bn

n∑
k=1

ak = 0.

In the following, we will state and demonstrate some results regarding the study of the
convergence of the product of numerical series. Firstly, we start with the definition of a
fundamental mathematical concept, namely the Cauchy product of two series. For more
details in the study of infinite series, see [3] or [6].

Definition 2.1 (Cauchy product of two infinite series). Let
∞∑
n=1

xn and
∞∑
n=1

yn be two

infinite series. The Cauchy product of these series is defined by
∞∑
n=1

zn, where the sequence

(zn)n⩾0 is defined by zn =
n∑

k=1

xkyn−k+1, for all n ∈ N∗.
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Next, we will state and prove two fundamental results that provide sufficient conditions
for the convergence of the Cauchy product.

Theorem 2.1 (Mertens).9 Let
∞∑
n=1

xn and
∞∑
n=1

bn be two convergent series. Suppose that

at least one of the series is absolutely convergent. Then the product in Cauchy’s form,
∞∑
n=1

zn, is convergent and: ∞∑
n=1

zn =

(
∞∑
n=1

xn

)(
∞∑
n=1

yn

)

Proof. Let A, respectively B be the sums of series
∞∑
n=1

xn, respectively
∞∑
n=1

yn. Let us

assume that
∞∑
n=1

yn is absolutely convergent. Then, there exists K > 0 such that:
n∑

k=1

|yn| < K, ∀n ∈ N (16)

Also let:
An =

n∑
k=1

xk, Bn =
n∑

k=1

yk, and Cn =
n∑

k=1

zk∀n ∈ N∗,

be the sequences of partial sums of
∞∑
n=1

xn,
∞∑
n=1

xn, respectively
∞∑
n=1

zn. Ordering the terms

of (Cn)n⩾1 by the (yn)n⩾1 terms, we obtain that:

Cn = y1An + y2An−1 + . . . ynA1 (17)

for all positive integers n. Since lim
n→∞

An = A it follows that there exists a sequence (αn)n⩾1

convergent to 0 such that An + αn = A,∀n ∈ N∗. Consequently, we can rewrite Cn as:

Cn = ABn − (y1αn + y2αn−1 + . . .+ ynα1) (18)

for all positive integers n. From lim
n→∞

yn = lim
n→∞

αn = 0 and condition (16), we can use

Corollary 2.3 and get that:

lim
n→∞

(y1αn + y2αn−1 + . . .+ ynα1) = 0,

which implies lim
n→∞

Cn = AB and this concludes the proof of the theorem.

Theorem 2.2 (Abel).10 Let
∞∑
n=1

xn and
∞∑
n=1

bn be two convergent series. Suppose that the

product in Cauchy’s form,
∞∑
n=0

zn, is convergent. Then:

∞∑
n=1

zn =

(
∞∑
n=1

xn

)(
∞∑
n=1

yn

)
.

9See [3] or [4, pp. 46-47] and for a different approach see [6, pp. 114-116]
10See [3] or [4, pp. 47-48]
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Proof. Let A,B, respectively C the sums of series
∞∑
n=1

xn,

∞∑
n=1

yn, respectively
∞∑
n=1

zn. Also

let:
An =

n∑
k=1

xk, Bn =
n∑

k=1

yk, and Cn =
n∑

k=1

zk∀n ∈ N

be the sequences of partial sums of
∞∑
n=1

xn,

∞∑
n=1

xn, respectively
∞∑
n=1

zn.

Firstly, we have
C1 + C2 + . . .+ Cn =

= x1y1 + (x1y1 + x1y2 + x2y1) + . . .+
n∑

k=1

(x1yk + x2yk−1 + . . .+ xky1) =

=
n∑

k=1

k∑
i=1

i∑
j=1

xjyi−j+1 = A1Bn + A2Bn−1 + . . .+ AnB1

From Corollary 2.3 we have lim
n→∞

1

n

n∑
k=1

Ck = C and from Corollary 2.6 we have

lim
n→∞

A1Bn + A2Bn−1 + . . .+ AnB1

n
= AB

But we also have that

C1 + C2 + . . .+ Cn = A1Bn + A2Bn−1 + . . .+ AnB1

so C = AB and this concludes the proof of the theorem.
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