ROMANIAN MATHEMATICAL MAGAZINE

If $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>\mathbf{0}$, then prove that:

$$
\sum \frac{(a+b)\left(a^{2}+b^{2}\right)}{4 c} \geq \sum a^{2}
$$

Proposed by Neculai Stanciu-Romania

Solution by Eric Cismaru-Romania

$$
\begin{gathered}
\sum \frac{(a+b)\left(a^{2}+b^{2}\right)}{4 c} \stackrel{A M-G M}{\geq} \frac{2 a b(a+b)}{4 c}=\sum \frac{a b(a+b)}{2 c} \geq \sum a^{2} \\
\text { so it is sufficient to prove that } \sum \frac{a b(a+b)}{c} \geq 2 \cdot\left(\sum a^{2}\right)
\end{gathered}
$$

Grouping the terms from the left - hand side and using the AM-GM inequality, we obtain

$$
\left(\frac{a^{2} b}{c}+\frac{a^{2} c}{b}\right)+\left(\frac{b^{2} c}{a}+\frac{b^{2} a}{c}\right)+\left(\frac{c^{2} b}{a}+\frac{c^{2} a}{b}\right) \geq \sum 2 a^{2}
$$

which is exactly what we wanted to prove.
Equality holds when $a b=a c \Leftrightarrow b=c$ and when $b c=a b \Leftrightarrow a=c \Rightarrow a=b=c$.

