ROMANIAN MATHEMATICAL MAGAZINE

If $a_{k}>0(k=1,2, \ldots, n), \lambda \geq 2 n+1$ and $\sum_{k=1}^{n} a_{k}=n$, then prove that

$$
\sum_{k=1}^{n} \frac{1}{\lambda+a_{k}^{2}} \leq \frac{n}{1+\lambda}
$$

What happens if λ does not verify the hypothesis?

Proposed by Neculai Stanciu - Romania

Solution by Eric Cismaru - Romania

$$
\text { Let us show that } \frac{1}{\lambda+a_{k}^{2}} \leq \frac{\lambda+3-2 a_{k}}{(\lambda+1)^{2}} \text {, for any } k=\overline{1, n} \text {. }
$$

This inequality is equivalent to

$$
\begin{gathered}
\left(\lambda+3-2 a_{k}\right)\left(\lambda+a_{k}^{2}\right) \geq(\lambda+1)^{2} \Leftrightarrow \\
\lambda^{2}+\lambda a_{k}^{2}+3 \lambda+3 a_{k}^{2}-\lambda 2 a_{k}-2 a_{k}^{3} \geq \lambda^{2}+2 \lambda+1 \\
\Leftrightarrow 2 a_{k}^{3}+\lambda 2 a_{k}-3 a_{k}^{2}-\lambda-\lambda a_{k}^{2}+1 \leq 0 \Leftrightarrow\left(a_{k}-1\right)^{2}\left(2 a_{k}+1-\lambda\right) \leq 0, \text { with }
\end{gathered}
$$

$\mathbf{2} a_{k}+\mathbf{1} \leq \mathbf{2 n}+\mathbf{1} \leq \lambda \Leftrightarrow a_{k} \leq n$, which is true because all the terms add up to n and are all positive reals.
Thus, we have shown that $\frac{1}{\lambda+a_{k}^{2}} \leq \frac{\lambda+3-2 a_{k}}{(\lambda+1)^{2}}$, for any $k=\overline{1, n}$.
Using this result, we have

$$
\sum_{k=1}^{n} \frac{1}{\lambda+a_{k}^{2}} \leq \sum_{k=1}^{n} \frac{\lambda+3-2 a_{k}}{(\lambda+1)^{2}}=\frac{n \lambda+3 n-2 n}{(\lambda+1)^{2}}=\frac{n(\lambda+1)}{(\lambda+1)^{2}}=\frac{n}{\lambda+1}
$$

Equality holds when $a_{k}=\mathbf{1}, k=\overline{\mathbf{1}, n}$.

