ROMANIAN MATHEMATICAL MAGAZINE

Let
$$a, b, c \ge 0$$
 such that $ab + bc + ca = 3$. Prove that
$$\frac{1}{\sqrt{5a + bc}} + \frac{1}{\sqrt{5b + ca}} + \frac{1}{\sqrt{5c + ab}} \ge \frac{\sqrt{6}}{2}$$

Proposed by Phan Ngoc Chau-Vietnam

Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco

Let
$$p := a + b + c$$
, $q := ab + bc + ca = 3$, r

$$:= abc \stackrel{?}{\leq} 1. \text{ By H\"older's inequality, we have}$$

$$\left(\sum_{cyc} \frac{1}{\sqrt{5a+bc}}\right)^2 \left(\sum_{cyc} (5a+bc)(b+c)^3 (2a+b+c)^3\right) \ge \left(\sum_{cyc} (b+c)(2a+b+c)\right)^3$$

$$= 8(p^2+3)^3.$$

So it suffices to prove that

$$16(p^2+3)^3 \ge 3\sum_{c \neq c} (5a+bc)(b+c)^3(a+p)^3,$$

which, after expanding and simplifying becomes,

$$f(r) = 7p^6 - 45p^5 + 144p^4 - 135p^3 + 432p^2 - 2835p + 432 + 3(p^5 + 5p^4 + 12p^3 - 90p^2 + 45p + 315)r - 3(4p^2 - 35p + 15)r^2 \ge 0.$$
 We have
$$f'(r) = 3[p^5 + 5p^4 + 12p^3 - 90p^2 + 45p + 315 - 2(4p^2 - 35p + 15)r].$$
 •If $4p^2 - 35p + 15 \le 0$, by using AM – GM inequality, we have
$$f'(r) \ge 3(5 + 5p^4 + 42p^3 + 45p + 345p + 245p + 245p + 345p + 345$$

$$f'(r) \ge 3(p^5 + 5p^4 + 12p^3 + 45p + 315 - 90p^2) \ge 3(4\sqrt[4]{5p^4 \cdot 12p^3 \cdot 45p \cdot 315} - 90p^2) > 0.$$

•If
$$4p^2 - 35p + 15 \ge 0$$
, since $r \le 1$ and by using AM – GM inequality, we have

$$f'(r) \ge 3(p^5 + 5p^4 + 12p^3 - 98p^2 + 115p + 285) \ge 3(4\sqrt[4]{5p^4 \cdot 12p^3 \cdot 115p \cdot 285} - 98p^2) > 0,$$

then f is increasing. And since $p \ge \sqrt{3q} = 3$ then we have two cases :

•If $p \ge 2\sqrt{3}$, we have

$$f(r) \ge f(0) = (p - 2\sqrt{3})[(7p + 14\sqrt{3} - 45)p^4 + (228 - 90\sqrt{3})p^3 + (456\sqrt{3} - 675)p^2 + (3168 - 1350\sqrt{3})p + 6336\sqrt{3} - 10935] + 54(712 - 405\sqrt{3}) \ge 0.$$

•If
$$3 \le p \le 2\sqrt{3}$$
, by Schur's inequality, we have $r \ge \frac{p(4q-p^2)}{9} = r'$, then $f(r) \ge f(r')$ with

$$f(r') = \frac{1}{27} (p-3) \{ (2\sqrt{3}-p) [13p^6 + (49+26\sqrt{3})p^5 + (98\sqrt{3}+33)p^4 + (924+66\sqrt{3})p^3 + (1848\sqrt{3}-3159)p^2 + (11583-6318\sqrt{3})p + 23166\sqrt{3}-50787] + 101574\sqrt{3} - 142884 \} \ge 0.$$

So the proof is complete. Equality holds iff a = b = c = 1.