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Abstract.  In this math note, I would like to elaborate some kinds of proof of the 

inequality  (  
 
)      over         So far, I have found     types of proof:  by direct 

algebraic computation, by using induction,  applying Vandermonde and Newton Binomial 

identities, and combinatorial proof.  Although only these 4 proofs are written here, I believe 

that there will be many other interesting methods and creative ideas, as an idiom says “All 

roads lead to Rome”. More suggestions and developments are welcome. 

 

MAIN RESULTS 

PROOF 1:  Direct Algebraic Computation 

Clearly  
   

 
    for all        and               Then, 
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PROOF 2:  By Induction Principle 

For        let   ( ) states that  (  
 
)       Note that   ( ) is true because  (  
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      when         Assume that   ( )  is true for some         then  (  
 
)       

Observe that 
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then 
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so   (   )  is also true   By induction  ( ) is true for every positive integers      i.e.  
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PROOF 3:  Vandermonde and Binomial theorem 

Recall Vandermonde identity , - :  For all            then 
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While binomial expansion theorem says , - : for all       and         we have 
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Setting           to equation  ( )   we get 
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Besides that, setting          and       to equation  (  ) give us 
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We also know that  .
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/  for all                 Therefore, 
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PROOF 4:  A Combinatorial Proof 

Let    *            +  be set of      distinct objects, with         We partition this 

set into     disjoint 2-element subsets as follows. 

   *     +         *     +         *     +          *         +  

Observe that the number of ways to choose     random objects from     without any 

constraint, that is  .
  
 
/   must be greater than or equal to the number of ways to 

choose     objects from     for which exactly one element in each      are taken, that is       

Therefore     .
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