FOUR PROOFS OF INEQUALITY $\binom{2 m}{m} \geq 2^{\boldsymbol{m}}, \forall m \in \mathbb{Z}^{+}$

Math note by:
Ivan Hadinata, Student in Department of Matematics, Gadjah Mada University, Yogyakarta, Indonesia.
Email: ivanhadinata05@gmail.com

Abstract

In this math note, I would like to elaborate some kinds of proof of the inequality $\binom{2 m}{m} \geq 2^{m}$ over $m \in \mathbb{Z}^{+}$. So far, I have found 4 types of proof: by direct algebraic computation, by using induction, applying Vandermonde and Newton Binomial identities, and combinatorial proof. Although only these 4 proofs are written here, I believe that there will be many other interesting methods and creative ideas, as an idiom says "All roads lead to Rome". More suggestions and developments are welcome.

MAIN RESULTS

PROOF 1: Direct Algebraic Computation

Clearly $\frac{m+k}{k} \geq 2$ for all $m \in \mathbb{Z}^{+}$and $k=1,2, \ldots \ldots, m$. Then,

$$
\binom{2 m}{m}=\frac{(2 m)!}{m!m!}=\prod_{k=1}^{m}\left(\frac{m+k}{k}\right) \geq \prod_{k=1}^{m} 2=2^{m}
$$

PROOF 2: By Induction Principle
For $m \in \mathbb{Z}^{+}$, let $P(m)$ states that $\binom{2 m}{m} \geq 2^{m}$. Note that $P(1)$ is true because $\binom{2 m}{m}=$ $2^{m}=2$ when $m=1$. Assume that $P(i)$ is true for some $i \in \mathbb{Z}^{+}$, then $\binom{2 i}{i} \geq 2^{i}$. Observe that

$$
\frac{\binom{2 i+2}{i+1}}{\binom{2 i}{i}}=\frac{\frac{(2 i+2)!}{(i+1)!(i+1)!}}{\frac{(2 i)!}{i!i!}}=\frac{2(2 i+1)}{i+1} \geq 2
$$

then

$$
\binom{2 i+2}{i+1} \geq 2\binom{2 i}{i} \geq 2 \cdot 2^{i}=2^{i+1}
$$

so $P(i+1)$ is also true. By induction, $P(m)$ is true for every positive integers m, i.e.

$$
\binom{2 m}{m} \geq 2^{m}, \forall m \in \mathbb{Z}^{+}
$$

PROOF 3: Vandermonde and Binomial theorem
Recall Vandermonde identity [1] : For all $m, n, r \in \mathbb{Z}^{+}$then

$$
\begin{equation*}
\sum_{k=0}^{r}\binom{m}{k}\binom{n}{r-k}=\binom{m}{0}\binom{n}{r}+\binom{m}{1}\binom{n}{r-1}+\ldots \ldots+\binom{m}{r}\binom{n}{0}=\binom{m+n}{r} \ldots \ldots \ldots \tag{*}
\end{equation*}
$$

While binomial expansion theorem says [2] : for all $n \in \mathbb{Z}^{+}$and $x, y \in \mathbb{R}$ we have

$$
\begin{gather*}
(x+y)^{n}=\binom{n}{n} x^{n} y^{0}+\binom{n}{n-1} x^{n-1} y^{1}+\ldots \ldots+\binom{n}{1} x^{1} y^{n-1}+\binom{n}{0} x^{0} y^{n} \\
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \ldots \ldots \ldots \ldots(* *) \tag{**}
\end{gather*}
$$

Setting $m, n, r:=m$ to equation (*), we get

$$
\binom{2 m}{m}=\sum_{k=0}^{m}\binom{m}{k}\binom{m}{m-k}=\sum_{k=0}^{m}\binom{m}{k}^{2}=\binom{m}{0}^{2}+\binom{m}{1}^{2}+\ldots \ldots+\binom{m}{m}^{2}
$$

Besides that, setting $x, y:=1$ and $n:=m$ to equation ($* *$) give us

$$
2^{m}=\sum_{k=0}^{m}\binom{m}{k}=\binom{m}{0}+\binom{m}{1}+\ldots \ldots+\binom{m}{m}
$$

We also know that $\binom{m}{k}^{2} \geq\binom{ m}{k}$ for all $k=0,1,2, \ldots \ldots, m$. Therefore,

$$
\binom{2 m}{m}=\sum_{k=0}^{m}\binom{m}{k}^{2} \geq \sum_{k=0}^{m}\binom{m}{k}=2^{m}
$$

PROOF 4: A Combinatorial Proof

Let $S=\left\{a_{1}, a_{2}, \ldots \ldots, a_{2 m}\right\}$ be set of $2 m$ distinct objects, with $m \in \mathbb{Z}^{+}$. We partition this set into m disjoint 2-element subsets as follows.

$$
S_{1}=\left\{a_{1}, a_{2}\right\}, \quad S_{2}=\left\{a_{3}, a_{4}\right\}, \quad S_{3}=\left\{a_{5}, a_{6}\right\}, \ldots \ldots \ldots, S_{m}=\left\{a_{2 m-1}, a_{2 m}\right\}
$$

Observe that the number of ways to choose m random objects from S without any constraint, that is $\binom{2 m}{m}$, must be greater than or equal to the number of ways to choose m objects from S for which exactly one element in each S_{i} are taken, that is 2^{m}. Therefore, $\binom{2 m}{m} \geq 2^{m}$.

REFERENCES

[1]. Vandermonde identity; Wikipedia The Free Encyclopedia; url: https://en.wikipedia.org/wiki/Vandermonde\'s_identity
[2]. Binomial theorem; Wikipedia The Free Encyclopedia; url: https://en.wikipedia.org/wiki/Binomial_theorem

