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In all triangles ABC holds:
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Remains to prove that:
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8Rr − 4r2 ≤ s2 + r2 − 8Rr ≤ 4R2 − 4Rr + 4r2

16Rr − 5r2 ≤ s2 ≤ 4R2 + 4Rr + 3r2

which is Gerretsen’s inequality.
Equality holds for a = b = c.
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