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In all triangles ABC holds:
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Solution by Daniel Sitaru and Claudia Nănuţi.
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Remains to prove that:
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3 ≤ 4R+ r (Doucet’s inequality)

9R

√
r

6R
≤ s ⇔ s2 ≥ 81R2 · r

6R
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(to prove)

By Gerretsen’s inequality:

s2 ≥ 16Rr − 5r2 ≥ 27Rr

2
⇔ 32Rr − 10r2 ≥ 27Rr

⇔ 5Rr ≥ 10r2 ⇔ R ≥ 2r (Euler)

Equality holds for a = b = c. □
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