PP45686

MIHÁLY BENCZE - ROMANIA

If $a, b, c, d>0$ then:

$$
\sum_{c y c} \frac{b+c+d}{(\sqrt{15(b+c+d)}+\sqrt{16 a+b+c+d})^{2}} \geq \frac{3}{32}
$$

Solution by Daniel Sitaru, Claudia Nănuţi.

$$
\begin{gathered}
\sum_{c y c} \frac{b+c+d}{(\sqrt{15(b+c+d)}+\sqrt{16 a+b+c+d})^{2}} \geq \\
\geq \sum_{c y c} \frac{b+c+d}{2(15 b+15 c+15 d+16 a+b+c+d)}= \\
=\sum_{c y c} \frac{b+c+d}{2 \cdot 16(a+b+c+d)}= \\
=\frac{1}{32(a+b+c+d)} \cdot \sum_{c y c}(b+c+d)= \\
=\frac{1}{32(a+b+c+d)} \cdot 3 \sum_{c y c} a= \\
=\frac{3(a+b+c+d)}{32(a+b+c+d)}=\frac{3}{32}
\end{gathered}
$$

Equality holds for $a=b=c=d$.

Mathematics Department, National Economic College "Theodor Costescu", Drobeta Turnu - Severin, Romania

Email address: dansitaru63@yahoo.com

