ROMANIAN MATHEMATICAL MAGAZINE

PROBLEMS FOR JUNIORS

JP.526. Let $a, b, c \in(0,1)$. Prove that:

$$
\frac{b+c}{1-a}+\frac{c+a}{1-b}+\frac{a+b}{1-c} \geq \frac{2 \sqrt{a b}}{1-\sqrt{a b}}+\frac{2 \sqrt{b c}}{1-\sqrt{b c}}+\frac{2 \sqrt{c a}}{1-\sqrt{c a}}
$$

JP.527. If $x, y, z>0$ with $x+y+z=1$ and $\lambda \geq 21$ then:

$$
\begin{aligned}
\frac{1}{x^{3}+y^{3}+z^{3}}+\frac{\lambda}{x y+y z+z \boldsymbol{x}} \geq 3(\lambda+3) \\
\quad \text { Proposed by Marin Chirciu - Romania }
\end{aligned}
$$

JP.528. If $a, b, c>0$ such that $a+b+c=3$ and $0 \leq \lambda \leq \frac{1}{2}$ then:

$$
\begin{array}{r}
\frac{1}{a^{3}+\lambda}+\frac{1}{b^{3}+\lambda}+\frac{1}{c^{3}+\lambda} \geq \frac{3}{\lambda+1} \\
\quad \text { Proposed by Marin Chirciu - Romania }
\end{array}
$$

JP.529. If $a, b, c>0 ; x \in \mathbb{R}$ then:

$$
\begin{aligned}
\frac{a}{\left(b \sin ^{2} x+c \cos ^{2} x\right)^{3}}+\frac{b}{\left(c \sin ^{2} x+b \cos ^{2} x\right)^{3}}+ \\
+\frac{c}{\left(a \sin ^{2} x+c \cos ^{2} x\right)^{3}} \geq \frac{27}{(a+b+c)^{2}} \\
\text { Proposed by Daniel Sitaru - Romania }
\end{aligned}
$$

JP.530. In $\triangle A B C, O$ - circumcenter. A_{1}, B_{1}, C_{1} are the intersection points of $A O, B O, C O$ with $B C, A C$ and $A B$ respectively. R_{1}, R_{2} and R_{3} are circumradii of $\triangle B O C, \triangle A O C$ and $\triangle A O B$ respectively. Show that:

$$
R\left(\frac{1}{O A_{1}}+\frac{1}{O B_{1}}+\frac{1}{O C_{1}}\right)+3=\frac{4 F}{R^{2}}\left(\frac{R_{1}}{B C}+\frac{R_{2}}{A C}+\frac{R_{3}}{A B}\right)
$$

Proposed by Ertan Yildirim - Turkiye
JP.531. If $a, b, c>0$ and $a b c=1$ then:

$$
\begin{array}{r}
\left(\frac{a}{2}+\frac{b}{c}\right)^{3}+\left(\frac{b}{2}+\frac{c}{a}\right)^{3}+\left(\frac{c}{2}+\frac{a}{b}\right)^{3} \geq 3 \sqrt[4]{18} \\
\text { Proposed by Khaled Abd Imouti - Syria } \\
1
\end{array}
$$

JP.532. In any $\triangle A B C, I$ - incenter, r - radii, R - circumradius, s - semiperimeter, the following relationship holds:

$$
\begin{aligned}
& A B+B I+C I \leq 2(R+r) \\
& \quad \text { Proposed by Marian Ursărescu - Romania }
\end{aligned}
$$

JP.533. Let be the triangle $A B C$ with $A D, B E, C F$ - altitudes and H - orthocenter. Prove that:

$$
\begin{array}{r}
\frac{\boldsymbol{H A}}{\boldsymbol{H} \boldsymbol{D}}+\frac{\boldsymbol{H B}}{\boldsymbol{H} \boldsymbol{E}}+\frac{\boldsymbol{H C}}{\boldsymbol{H} \boldsymbol{F}} \geq \mathbf{2}\left(\left(\frac{\boldsymbol{R}}{\boldsymbol{r}}\right)^{\mathbf{2}}-\mathbf{1}\right) \\
\text { Proposed by Marian Ursărescu - Romania }
\end{array}
$$

JP.534. In $\triangle A B C, I$ - incenter and D, E, F the points of contact of the cevians $A I, B I, C I$ with the circle, then the following relationship holds:

$$
\begin{aligned}
& I D+I E+I F \leq \frac{2\left(R^{2}-R r+r^{2}\right)}{r} \\
& \quad \text { Proposed by Marian Ursărescu - Romania }
\end{aligned}
$$

JP.535. In $\Delta A B C$ the following relationship holds:

$$
\begin{aligned}
\sum_{c y c} & \frac{r_{a}^{4}+r_{b}^{2} r_{c}^{2}}{r_{b}^{2}+r_{c}^{2}} \geq s^{2} \\
& \text { Proposed by Marian Ursărescu - Romania }
\end{aligned}
$$

JP.536. In $\Delta A B C$ the following relationship holds:

$$
\begin{aligned}
& \frac{2 R}{r} \geq \frac{(4 R+r)^{2}}{s^{2}}+1 \\
& \quad \text { Proposed by Alex Szoros - Romania }
\end{aligned}
$$

JP.537. Find the angles of a triangle $A B C$ if

$$
\begin{array}{r}
\frac{\sin A+2 \sin B}{\sqrt{\sin ^{2} B+\sin ^{2} C+2 \cos A \sin B \sin C}}+1=\frac{3 \sqrt{3}}{2 \sin C} \\
\text { Proposed by Cristian Miu - Romania }
\end{array}
$$

JP.538. In $\triangle A B C$ the following relationship holds:

$$
\frac{3}{2 R} \leq \sum \frac{\cos ^{2} \frac{A}{2}}{h_{a}} \leq \frac{3}{4 r}
$$

JP.539. In $\triangle A B C, O \in(A B), O Q \| B C$, where $Q \in(A C)$.
$P \in(O C)$ such that $R P \| B C$, where $R \in(A C)$ and $T \in(A B)$. If the lengths of the segment $R T$ is the geometric mean of the lengths of the segments $O Q$ and $B C$, then $O P<\frac{O C}{2}$.

Proposed by Gheorghe Molea - Romania JP.540. Let be $\triangle A C D$ with $m(\widehat{C A D})>90^{\circ}, B \in(C D)$, such that $m(\widehat{B A C})=90^{\circ}$ and $A C>A B$. The bisector $\widehat{A C D}$ intersects $A D$ in E. If ($B E$ is the bisector $\widehat{A B D}$, prove that:

$$
\frac{1}{A D}=\frac{\sqrt{2}}{2}\left(\frac{1}{A B}-\frac{1}{A C}\right)
$$

Proposed by Gheorghe Molea - Romania

PROBLEMS FOR SENIORS

SP.526. If $a, b, c, \lambda>0, a+b+c=\lambda$ then:

$$
\begin{aligned}
\sum \sqrt{\frac{b c}{a}+\lambda} \geq & 2(\sqrt{a}+\sqrt{b}+\sqrt{c}) \\
& \text { Proposed by Marin Chirciu - Romania }
\end{aligned}
$$

SP.527. If $x, y, z \geq 0$ with $x+y+z=1$ and $0 \leq \lambda \leq \frac{9}{4}$ then:

$$
\begin{aligned}
& x y+y z+z x-\lambda x y z \leq \frac{9-\lambda}{27} \\
& \text { Proposed by Marin Chirciu - Romania }
\end{aligned}
$$

SP.528. If $a, b, c \geq 1$ then:

$$
\frac{1}{9}(a+b+c)+\frac{1}{3 \sqrt{2}} \geq \frac{\sqrt[3]{a b-1}}{b+c+\sqrt{2}}+\frac{\sqrt[3]{b c-1}}{c+a+\sqrt{2}}+\frac{\sqrt[3]{c a-1}}{a+b+\sqrt{2}}
$$

Proposed by Marin Chirciu - Romania

SP.529. Let $A B C$ be a triangle with inradius r and circumradius R and let the interior points D, E, F be chosen on the sides $B C, C A, A B$ respectively, so that $A D, B E, C F$ are the bisectors of the triangle $A B C$. Let r_{A}, r_{B}, r_{C} be the inradii of the triangles $A E F, B F D, C D E$ respectively. Prove that:

$$
\begin{aligned}
& r_{A}^{2}+r_{B}^{2}+r_{C}^{2} \leq \frac{3 R^{2}}{\mathbf{6 4} r^{2}} \\
& \quad \text { Proposed by George Apostolopoulos - Greece }
\end{aligned}
$$

SP.530. Let a, b, c be the lengths of the sides of a triangle with inradius circumradius R. Prove that:
$\frac{3^{1-\frac{1}{2 n}}}{\sqrt[n]{(m+1) R}} \leq \frac{1}{\sqrt[n]{m \cdot a+b}}+\frac{1}{\sqrt[n]{m \cdot b+c}}+\frac{1}{\sqrt[n]{m \cdot c+a}} \leq \frac{3^{1-\frac{1}{2 n}}}{\sqrt[n]{(m+1) \cdot 2 r}}$ for all integers $m \geq 0$ and $n \geq 1$.

Proposed by George Apostolopoulos - Greece

SP.531. If $a, b, c \geq 1$, then:

$$
\begin{array}{r}
\sqrt{\frac{a b+b c+c a}{3}}-\sqrt[3]{a b c} \geq \sqrt{\frac{\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a}}{3}}-\frac{1}{\sqrt[3]{a b c}} \\
\text { Proposed by Vasile Mircea Popa - Romania }
\end{array}
$$

SP.532. Prove that in any right triangle with the cathetus b and c we have the inequality: $r \leq \frac{2-\sqrt{2}}{4}(b+c)$, where r is the inradii of the triangle.

Proposed by Laura Molea and Gheorghe Molea - Romania

SP.533. Prove that $k=\frac{4}{5}$ is the largest positive value of the constant k such that

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}-5 \geq k(a+b+c+d+e-5)
$$

for any positive real numbers a, b, c, d, e satisfying $a b+b c+c d+d e+e a=5$

Proposed by Vasile Cârtoaje - Romania

SP.534. If the lengths a, b, c of the sides of a triangle are the roots of the equation $k x^{3}-l x^{2}+9 k x-l=0 \quad(k \cdot l \neq 0)$, then find the area of the triangle.

Proposed by George Apostolopoulos - Greece

SP.535. Determine all the numbers $\overline{a b c d}$ such that:

$$
\begin{aligned}
& \mathbf{1}+\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}+\boldsymbol{a} \cdot \boldsymbol{b}+\boldsymbol{b} \cdot \boldsymbol{c}+\boldsymbol{c} \cdot \boldsymbol{a}=\boldsymbol{a} \cdot \boldsymbol{b} \cdot \boldsymbol{c} \cdot \boldsymbol{d} \\
& \quad \text { Proposed by Neculai Stanciu, Titu Zvonaru - Romania }
\end{aligned}
$$

SP.536. If $\boldsymbol{x} \geq 0$ then:

$$
\begin{aligned}
& \frac{2}{\sqrt{\pi}}\left(\int_{0}^{x} e^{-t^{2}} d t\right)^{2}+\int_{0}^{2 x} e^{-t^{2}} d t \geq 2 \int_{0}^{x} e^{-t^{2}} d t \\
& \text { Proposed by Daniel Sitaru - Romania } \\
& \text { ©Daniel Sitaru, ISSN-L 2501-0099 }
\end{aligned}
$$

SP.537. Solve for real numbers:

$$
\begin{aligned}
3 e^{x}+3 e^{3 x}+1= & 4 e^{2 x}+3 \cdot \sqrt[3]{e^{4 x}} \\
& \text { Proposed by Daniel Sitaru - Romania }
\end{aligned}
$$

SP.538. In acute $\triangle A B C$ the following relationship holds:

$$
36 \leq 4\left(\sum_{c y c} \tan A \tan B\right) \leq 9+\prod_{c y c} \tan ^{2} A
$$

Proposed by Daniel Sitaru - Romania

SP.539. If $a>0 ; f: \mathbb{R} \rightarrow \mathbb{R}$ is a function such that:

$$
\begin{gathered}
f\left(a x-\frac{1}{a}\right) \leq a x \leq f(x)-1 ;(\forall) x \in \mathbb{R} \text { then: } \\
f(2)+f(4)+f(8)>\frac{12 \sqrt{a}}{a}
\end{gathered}
$$

Proposed by Daniel Sitaru - Romania

SP.540. If $x, y \in[3,4] ; z, t \in[1,12]$ then:

$$
\begin{aligned}
&(x+y+z+t)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right) \leq \frac{\mathbf{1 0 0}}{\mathbf{3}} \\
& \text { Proposed by Daniel Sitaru - Romania }
\end{aligned}
$$

UNDERGRADUATE PROBLEMS

UP.526. Prove the identity:

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{|\sin (x)|}{1+x^{2}} d x=1-2 \sum_{n=1}^{\infty} \frac{1}{\left(4 n^{2}-1\right) e^{2 n}} \\
& \text { Proposed by Vasile Mircea Popa - Romania }
\end{aligned}
$$

UP.527. Prove the closed form:

$$
\int_{0}^{\infty} \frac{\ln x}{x^{3}+x \sqrt{x}+1} d x=-\frac{32 \pi^{2}}{81} \sin \frac{\pi}{18}
$$

UP.528. If $a_{n}>0 ; r_{n}>0 ; a_{n+1}=a_{n}+n \cdot r_{n} ; n \in \mathbb{N}^{*}$ and

$$
\lim _{n \rightarrow \infty} r_{n}=r>0
$$

then find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(2 H_{n}-\log a_{n}\right)
$$

Proposed by D.M. Bătineţu - Giurgiu, Daniel Sitaru - Romania

UP.529. If $a_{n}>0 ; n \in \mathbb{N}^{*} ; \lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=a>0$ then find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt[n]{n!}}-\frac{1}{\sqrt[n+1]{(n+1)!}}\right) \cdot a_{n}^{2}
$$

Proposed by D.M. Bătineţu - Giurgiu, Daniel Sitaru - Romania

UP.530. Find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt[n]{(2 n-1)!!}}-\frac{1}{\sqrt[n+1]{(2 n+1)!!}}\right) \cdot e^{2 H_{n}}
$$

Proposed by D.M. Bătineţu - Giurgiu, Daniel Sitaru - Romania

UP.531. Prove that:

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{x^{2} \sinh (2 x)}{\cosh ^{2}(2 x)} d x=\frac{3 \pi^{3}}{128} \\
& \text { Proposed by Said Attaoui - Algeria }
\end{aligned}
$$

UP.532. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R} ; f(0)=0$ such that:

$$
\begin{aligned}
f(x)=f\left(\frac{x}{5}\right) & +\frac{x}{7} ;(\forall) x \in \mathbb{R} \\
& \text { Proposed by Daniel Sitaru - Romania }
\end{aligned}
$$

UP.533. Calculate the integral:

$$
\begin{aligned}
& \int_{-1}^{1} \frac{\arccos x}{\sqrt{4 x^{4}+x^{2}+4}} d x \\
& \text { Proposed by Vasile Mircea Popa - Romania }
\end{aligned}
$$

UP.534. If $a, b>0$ then:

$$
\begin{array}{r}
\int_{a}^{b} \int_{a}^{b}\left(\frac{\boldsymbol{x}}{\boldsymbol{x}^{4}+y^{2}}+\frac{\boldsymbol{y}}{\boldsymbol{y}^{4}+x^{2}}\right) d x d y \leq \ln ^{2}\left(\frac{b}{a}\right) \\
\quad \text { Proposed by Daniel Sitaru - Romania }
\end{array}
$$

UP.535. If $x, y, z>1 ; x \neq y \neq z \neq x$ and

$$
\log _{\frac{y}{z}} x+\log _{\frac{z}{x}} y+\log _{\frac{x}{y}} z=0
$$

then:

$$
\begin{aligned}
& \frac{\log _{2} x}{\log _{2}^{2}\left(\frac{y}{z}\right)}+\frac{\log _{2} y}{\log _{2}^{2}\left(\frac{z}{x}\right)}+\frac{\log _{2} z}{\log _{2}^{2}\left(\frac{x}{y}\right)}=0 \\
& \text { Proposed by Daniel Sitaru - Romania }
\end{aligned}
$$

UP.536. If $1<a \leq b ; m \geq 1$ then:

$$
\begin{aligned}
& \frac{(b-1)^{m+1}-(a-1)^{m+1}}{m+1}+b-a \leq \frac{b^{m+1}-a^{m+1}}{m+1} \\
& \text { Proposed by Daniel Sitaru - Romania }
\end{aligned}
$$

UP.537. Find:

$$
\Omega=\lim _{n \rightarrow \infty} \frac{1}{n \cdot 8^{n}}\binom{4 n}{n}\binom{4 n}{2 n}\binom{3 n}{n}^{-2}
$$

Proposed by Daniel Sitaru - Romania
UP.538. Solve for real numbers:

$$
\begin{aligned}
& \int_{4}^{x} \frac{t^{2}+1}{t^{3}+1} d t=2(\sqrt{x}-2) \\
& \text { Proposed by Daniel Sitaru - Romania }
\end{aligned}
$$

UP.539. If $0<a \leq b$ then:

$$
\begin{aligned}
& \int_{a}^{b} e^{x^{2}} d x \geq(b-a) \cdot \sqrt[3]{a^{2}+a b+b^{2}} \\
& \text { Proposed by Daniel Sitaru - Romania }
\end{aligned}
$$

UP.540. If $a, b \in \mathbb{R}, a \leq b, f:[a, b] \rightarrow(0, \infty), f$ - continuous then:

$$
3 \int_{a}^{b} f(x) d x+\frac{1}{(b-a)^{2}}\left(\int_{a}^{b} \frac{1}{f(x)} d x\right)^{3} \geq 4(b-a)
$$

Proposed by Daniel Sitaru - Romania

Mathematics Department, "Theodor Costescu" National Economic, College Drobeta Turnu - Severin, ROMANiA

