ROMANIAN MATHEMATICAL MAGAZINE

JP. 530 In $\triangle A B C, O$ - circumcenter. A_{1}, B_{1}, C_{1} are the intersection points of $A O, B O, C O$ with $B C, A C$ and $A B$ respectively. R_{1}, R_{2} and R_{3} are circumradii of $\triangle B O C, \triangle A O C$ and $\triangle A O B$ respectively. Show that

$$
R\left(\frac{1}{O A_{1}}+\frac{1}{O B_{1}}+\frac{1}{O C_{1}}\right)+3=\frac{4 F}{R^{2}}\left(\frac{R_{1}}{B C}+\frac{R_{2}}{A C}+\frac{R_{3}}{A B}\right)
$$

Proposed by Ertan Yildirim-Turkiye
Solution 1 by proposer, Solution 2 by Marin Chiricu - Romania
Solution 1 by proposer

$$
\begin{aligned}
\frac{F}{[B O C]}= & \frac{\frac{1}{2}(R+x) \cdot a \cdot \sin \alpha}{\frac{1}{2} \cdot x \cdot a \cdot \sin \alpha}=\frac{R+x}{x}=\frac{R}{x}+1 \\
& \frac{\frac{a b c}{4 R}}{R^{2} \cdot \frac{a}{4 R_{1}}}=\frac{a b c \cdot R_{1}}{a \cdot R^{3}}=\frac{R}{x}+1 \\
\Rightarrow & \frac{4 F \cdot R \cdot R_{1}}{a \cdot R^{3}}=\frac{4 F}{R^{2}} \cdot \frac{R_{1}}{a}=\frac{R}{x}+1
\end{aligned}
$$

Similarly $\frac{4 F}{R^{2}} \cdot \frac{R_{2}}{b}=\frac{R}{y}+1, \frac{4 F}{R^{2}} \cdot \frac{R_{3}}{c}=\frac{R}{z}+1$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{gathered}
\frac{4 F}{R^{2}} \cdot\left(\frac{R_{1}}{a}+\frac{R_{2}}{b}+\frac{R_{3}}{c}\right)=3+R\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \\
\frac{4 F}{R^{2}} \cdot\left(\frac{R_{1}}{B C}+\frac{R_{2}}{A C}+\frac{R_{3}}{A B}\right)=3+R\left(\frac{1}{O A_{1}}+\frac{1}{O B_{1}}+\frac{1}{O C_{1}}\right)
\end{gathered}
$$

Solution 2 by Marin Chirciu - Romania

We evaluate the left side member.
Let be D - the leg of the height from A and M - the left of the perpendicular from O on $B C, d_{a}$ - the distance from O to $B C$.

We have $\triangle A D C \sim \Delta O M A_{1} \Rightarrow \frac{A D}{O M}=\frac{A A_{1}}{O A_{1}} \Leftrightarrow \frac{h_{a}}{d_{a}}=\frac{R+O A_{1}}{O A_{1}} \Leftrightarrow \frac{h_{a}}{d_{a}}=\frac{R}{O A_{1}}=$

$$
=\frac{R}{O A_{1}}+1 \Leftrightarrow \frac{R}{O A_{1}}=\frac{h_{a}}{d_{a}}-1
$$

We obtain:
$L H S=R\left(\frac{1}{O A_{1}}+\frac{1}{O B_{1}}+\frac{1}{O C_{1}}\right)+3=\sum\left(\frac{h_{a}}{d_{a}}-1\right)=3=\sum \frac{h_{a}}{d_{a}}=\sum \frac{a h_{a}}{a d_{a}}=\sum \frac{2 F}{a d_{a}}=2 F \sum \frac{1}{a d_{a}}$
We evaluate the right hand member.

$$
\begin{gather*}
R_{1}=\frac{O B \cdot O C \cdot B C}{4[B O C]}=\frac{R \cdot R \cdot a}{4 \cdot \frac{a \cdot d_{a}}{2}}=\frac{R^{2}}{2 d_{a}} \Rightarrow \frac{R_{1}}{B C}=\frac{\frac{R^{2}}{2 d_{a}}}{a}=\frac{R^{2}}{2 a d_{a}} \\
R H S=\frac{4 F}{R^{2}}\left(\frac{R_{1}}{B C}+\frac{R_{2}}{C A}+\frac{R_{3}}{A B}\right)=\frac{4 F}{R^{2}} \sum \frac{R_{1}}{B C}=\frac{4 F}{R^{2}} \sum \frac{R^{2}}{2 a d_{a}}=2 F \sum \frac{1}{a d_{a}} \tag{2}
\end{gather*}
$$

From (1) and (2) we deduce the conclusion.

