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JP.530 In AABC, O — circumcenter. A, B4, C; are the intersection points of
AO, BO, CO with BC, AC and AB respectively. R{, R, and R3 are circumradii
of ABOC,AAO0C and AAOB respectively. Show that
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Proposed by Ertan Yildirim-Turkiye
Solution 1 by proposer, Solution 2 by Marin Chiricu — Romania

Solution 1 by proposer
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Solution 2 by Marin Chirciu — Romania

We evaluate the left side member.

Let be D - the leg of the height from A and M - the left of the perpendicular
from O on BC, d, — the distance from O to BC.

We have AADC ~ AOMAle—Mzz—'Z(@Z—ZzR;Zfl@Z—::O—M:
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We obtain:
LHS =R (G + o+ o) +3=2(f2-1) =3 =30 =32 =T 2 = 2F3 - (1)
We evaluate the right hand member.
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From (1) and (2) we deduce the conclusion.




