
 
JP.530 In 𝚫𝑨𝑩𝑪,𝑶 − circumcenter. 𝑨𝟏, 𝑩𝟏, 𝑪𝟏 are the intersection points of 

𝑨𝑶,𝑩𝑶, 𝑪𝑶 with 𝑩𝑪, 𝑨𝑪 and 𝑨𝑩 respectively. 𝑹𝟏, 𝑹𝟐  and 𝑹𝟑 are circumradii 

of 𝚫𝑩𝑶𝑪, 𝚫𝑨𝑶𝑪 and 𝚫𝑨𝑶𝑩 respectively. Show that 
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Solution 1 by proposer 
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Solution 2 by Marin Chirciu – Romania  

We evaluate the left side member. 

Let be 𝑫 – the leg of the height from 𝑨 and 𝑴 – the left of the perpendicular 

from 𝑶 on 𝑩𝑪,𝒅𝒂 – the distance from 𝑶 to 𝑩𝑪. 

We have 𝚫𝑨𝑫𝑪 ∼ 𝚫𝑶𝑴𝑨𝟏 ⇒
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We evaluate the right hand member. 
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From (1) and (2) we deduce the conclusion. 

 


