
 
JP.531 If 𝒂, 𝒃, 𝒄 > 0 and 𝒂𝒃𝒄 = 𝟏 then: 
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Proposed by Khaled Abd Imouti-Syria 
Solution 1 by proposer, Solution 2 and generalizations by Marin Chirciu – 
Romania 
  
Solution 1 by proposer 
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Solution 2 by Marin Chirciu – Romania  
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The inequality is a strict one. 

Remark: The problem can be developed. 

If 𝒂, 𝒃, 𝒄 > 0, 𝑎𝑏𝑐 = 1 and 𝒏 ∈ ℕ then: 
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Marin Chirciu – Romania  

Solution: 
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Equality holds if and only if 𝒂 = 𝒃 = 𝒄. 

Note: For 𝒏 = 𝟑 we obtain Problem JP.531 from RMM, Number 36, Spring 

2025, proposed by Khaled Abd Imouti, Syria 

Again the problem can be developed. 

If 𝒂, 𝒃, 𝒄 > 0, 𝑎𝑏𝑐 = 1 and 𝒏 ∈ ℕ, 𝝀 > 0 then: 
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Marin Chirciu – Romania  

Solution: 
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Equality holds if and only if 𝒂 = 𝒃 = 𝒄. 

Note: For 𝒏 = 𝟑 and 𝝀 = 𝟐 we obtain Problem JP.531 from RMM, Number 36, 

Spring 2025, proposed by Khaled Abd Imouti, Syria 

 

 


