ROMANIAN MATHEMATICAL MAGAZINE

JP. 531 If $a, b, c>0$ and $\boldsymbol{a b c}=1$ then:

$$
\left(\frac{a}{2}+\frac{b}{c}\right)^{3}+\left(\frac{b}{2}+\frac{c}{a}\right)^{3}+\left(\frac{c}{2}+\frac{a}{b}\right)^{3}>3 \sqrt[4]{18}
$$

Proposed by Khaled Abd Imouti-Syria
Solution 1 by proposer, Solution 2 and generalizations by Marin Chirciu Romania

Solution 1 by proposer

$$
\begin{gathered}
\left(a+\frac{2 b}{c}\right)^{3}=a^{3}+3 a^{2} \cdot \frac{3 b}{c}+3 a \cdot \frac{4 b^{2}}{c^{2}}+\frac{8 b^{3}}{c^{3}} \\
\left(a+\frac{2 b}{c}\right)^{3}=a^{3}+6 \frac{a^{2} b}{c}+12 \frac{a b^{2}}{c^{2}}+\frac{8 b^{3}}{c^{3}} \\
\left(a+\frac{2 b}{c}\right)^{3}>4 \sqrt[4]{\frac{6 \cdot 12 \cdot 8 \cdot a^{6} \cdot b^{6}}{c^{6}}},\left(a+\frac{2 b}{c}\right)^{3}>4 \sqrt[4]{\frac{2^{4} \cdot 18 \cdot a^{8} \cdot b^{8} \cdot c^{2}}{c^{8} a^{2} b^{2}}} \\
\left(a+\frac{2 b}{c}\right)^{3}>4 \cdot 2 \sqrt[4]{\frac{18 a^{8} b^{8} c^{2}}{c^{8} \cdot a^{2} \cdot b^{2}}},\left(a+\frac{2 b}{c}\right)^{3}>8 \cdot \frac{a^{2} b^{2}}{c^{2}} \sqrt[4]{\frac{18 c^{2}}{a^{2} b^{2}}} \\
a b c=1 \Rightarrow c=\frac{1}{a b}, c^{2}=\frac{1}{a^{2} b^{2}}, \\
\left(a+\frac{2 b}{c}\right)^{3}>8 \frac{a^{2} b^{2}}{c^{2}} \sqrt[4]{a^{2} b^{2}}=\frac{18}{a^{4} b^{4}} \\
\left(a+\frac{2 b}{c}\right)^{3}>8 \cdot \frac{a^{2} b^{2}}{c^{2}} \cdot \frac{4 \sqrt[4]{18}}{a b} \\
\left(a+\frac{2 b}{c}\right)^{3}>8 \sqrt[4]{18} \cdot \frac{a b}{c^{2}} \\
\left(a+\frac{2 b}{c}\right)^{3}+\left(b+\frac{2 c}{a}\right)^{3}+\left(c+\frac{2 a}{b}\right)^{3}>8 \sqrt[4]{18}\left[\frac{a b}{c^{2}}+\frac{b c}{a^{2}}+\frac{c a}{b^{2}}\right] \\
\geq 8 \sqrt[4]{18} \cdot 3 \cdot \sqrt[3]{\frac{a^{2} b^{2} c^{2}}{a^{2} b^{2} c^{2}}}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{gathered}
\left(a+\frac{2 b}{c}\right)^{3}+\left(b+\frac{2 c}{a}\right)^{3}+\left(c+\frac{2 a}{b}\right)^{3}>24 \sqrt[4]{18} \\
\left(\frac{a}{2}+\frac{b}{c}\right)^{3}+\left(\frac{b}{2}+\frac{c}{a}\right)^{3}+\left(\frac{c}{2}+\frac{a}{b}\right)^{3}>3 \sqrt[4]{18}
\end{gathered}
$$

Solution 2 by Marin Chirciu - Romania

$$
\begin{aligned}
& \sum\left(\frac{a}{2}+\frac{b}{c}\right)^{3} \geq 3 \sqrt[4]{18} \\
& L H S=\sum\left(\frac{a}{2}+\frac{b}{c}\right)^{3} \stackrel{\text { Holder }}{\geq} \frac{\left[\sum\left(\frac{a}{b}+\frac{b}{c}\right)\right]^{3}}{9}= \\
& =\frac{\left(\frac{a+b+c}{2}+\frac{b}{c}+\frac{c}{a}+\frac{a}{b}\right)^{3}}{9} \stackrel{A M-G M}{\geq} \\
& \stackrel{A M-G M}{\geq} \frac{\left(\frac{3 \sqrt[3]{a b c}}{2}+3 \sqrt[3]{\frac{b}{c} \cdot \frac{c}{a} \cdot \frac{a}{b}}\right)^{3}}{9}=\frac{\left(\frac{3}{2}+3\right)^{3}}{9}=\frac{\left(\frac{9}{2}\right)^{3}}{9}=\frac{9^{2}}{2^{3}}= \\
& =\frac{\mathbf{8 1}}{8}>3 \sqrt[4]{\mathbf{1 8}}=R H S
\end{aligned}
$$

The inequality is a strict one.
Remark: The problem can be developed.
If $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>0, a b c=1$ and $\boldsymbol{n} \in \mathbb{N}$ then:

$$
\sum\left(\frac{a}{2}+\frac{b}{c}\right)^{n} \geq 3\left(\frac{3}{2}\right)^{n}
$$

Marin Chirciu - Romania
Solution:

$$
L H S=\sum\left(\frac{a}{2}+\frac{b}{c}\right)^{n} \stackrel{\text { Holder }}{\geq} \frac{\left[\sum\left(\frac{a}{2}+\frac{b}{c}\right)\right]^{n}}{3^{n-1}}=
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{gathered}
=\frac{\left(\frac{a+b+c}{2}+\frac{b}{c}+\frac{c}{a}+\frac{a}{b}\right)^{n}}{3^{n-1}} \stackrel{A M-G M}{\geq} \\
\stackrel{A M-G M}{\geq} \frac{\left(\frac{3 \sqrt[3]{a b c}}{2}+3 \sqrt[3]{\frac{b}{c} \cdot \frac{c}{a} \cdot \frac{a}{b}}\right)^{n}}{3^{n-1}}=\frac{\left(\frac{3}{2}+3\right)^{n}}{3^{n-1}}=\frac{\left(\frac{9}{2}\right)^{n}}{3^{n-1}}=3\left(\frac{3}{2}\right)^{n}=R H S
\end{gathered}
$$

Equality holds if and only if $a=b=c$.
Note: For $n=3$ we obtain Problem JP. 531 from RMM, Number 36, Spring 2025, proposed by Khaled Abd Imouti, Syria

Again the problem can be developed.
If $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>0, a b c=1$ and $\boldsymbol{n} \in \mathbb{N}, \boldsymbol{\lambda}>0$ then:

$$
\sum\left(\frac{a}{\lambda}+\frac{b}{c}\right)^{n} \geq 3\left(1+\frac{1}{\lambda}\right)^{n}
$$

Solution:

$$
\begin{gathered}
L H S=\sum\left(\frac{a}{\lambda}+\frac{b}{c}\right)^{n} \stackrel{\text { Holder }}{\geq} \frac{\left[\sum\left(\frac{a}{\lambda}+\frac{b}{c}\right)\right]^{n}}{3^{n-1}}=\frac{\left(\frac{a+b+c}{\lambda}+\frac{b}{c}+\frac{c}{a}+\frac{a}{b}\right)^{n}}{3^{n-1}} \stackrel{A M-G M}{\geq} \\
\underset{\geq}{A M-G M} \frac{\left(\frac{3 \sqrt[3]{a b c}}{\lambda}+3 \sqrt[3]{\frac{b}{c} \cdot \frac{c}{a} \cdot \frac{a}{b}}\right)^{n}}{3^{n-1}}=\frac{\left(\frac{3}{\lambda}+3\right)^{n}}{3^{n-1}}=\frac{\left(\frac{3 \lambda+3}{\lambda}\right)^{n}}{3^{n-1}}= \\
=3\left(\frac{3 \lambda+3}{3 \lambda}\right)^{n}=3\left(\frac{\lambda+1}{\lambda}\right)^{n}=R H S
\end{gathered}
$$

Equality holds if and only if $a=b=c$.
Note: For $n=3$ and $\lambda=2$ we obtain Problem JP. 531 from RMM, Number 36, Spring 2025, proposed by Khaled Abd Imouti, Syria

