ROMANIAN MATHEMATICAL MAGAZINE

JP. 537 Find the angles of a triangle $A B C$ if

$$
\begin{array}{r}
\frac{\sin A+2 \sin B}{\sqrt{\sin ^{2} B+\sin ^{2} C+2 \cos A \sin B \sin C}}+1=\frac{3 \sqrt{3}}{2 \sin C} \\
\text { Proposed by Cristian Miu - Romania }
\end{array}
$$

Solution 1 by proposer

$$
\begin{gathered}
h_{a}=2 R \sin B \sin C, h_{b}=2 R \sin A \sin C \text { so we can write } \\
\frac{h_{b}+2 h_{a}}{\sqrt{b^{2}+c^{2}+2 b c \cos A}}+\sin C=\frac{3 \sqrt{3}}{2} \leftrightarrow \\
\frac{h_{b}+2 h_{a}}{2 m_{a}}+\sin C=\frac{3 \sqrt{3}}{2} \leftrightarrow \\
\frac{F}{b m_{a}}+\frac{2 F}{a m_{a}}+\sin C=\frac{3 \sqrt{3}}{2} \text { where } F \text { is the area of } A B C \\
\text { Let } M \in B C \text { such as } B M=M C \text { then } \\
\frac{F}{b m_{a}}=\sin (\widehat{M A C}), \frac{2 F}{a m_{a}}=\sin (\widehat{A M C}) \\
\text { Now we can write }
\end{gathered}
$$

$$
\sin (\widehat{M A C})+\sin (\widehat{A M C})+\sin C=\frac{3 \sqrt{3}}{2} . \text { From here we obtain that } C=\frac{\pi}{3} \text { and } A M=\frac{B C}{2} .
$$

But if
$A M=M C$ then $A=\frac{\pi}{2}$.
So, $A=\frac{\pi}{2}, B=\frac{\pi}{C}, C=\frac{\pi}{3}$
Solution 2 by Marin Chirciu - Romania
In $\triangle A B C$ non-obtuse we have $\cos A \geq 0$, with equality for $A=90^{\circ}$

$$
\begin{gathered}
\sin ^{2} B+\sin ^{2} C+2 \cos A \sin B \sin C \geq \sin ^{2} B+\sin ^{2} C+2 \cdot 0 \cdot \sin B \sin C= \\
=\sin ^{2} B+\sin ^{2} C \\
\text { For } A=90^{\circ} \Rightarrow B+C=90^{\circ} \Rightarrow \sin ^{2} B+\sin ^{2} C=1
\end{gathered}
$$

We obtain:

$$
L H S=\frac{\sin A+2 \sin B}{\sqrt{\sin ^{2} B+\sin ^{2} C+2 \cos A \sin B \sin C}}+1 \leq \frac{\sin A+2 \sin B}{\sqrt{1+2 \cdot 0}}+1=
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{aligned}
= & \frac{1+2 \sin B}{1}+1=2 \sin B+2 \\
& \text { We have } L H S \leq \sin B+2
\end{aligned}
$$

From $R H S=\frac{3 \sqrt{3}}{2 \sin C}=L H S \geq 2 \sin B+2 \Rightarrow \frac{3 \sqrt{3}}{2 \sin C} \geq 2 \sin B+2$, with equality for $\sin B=\frac{1}{2}$ and $\sin C=\frac{\sqrt{3}}{2} \Rightarrow B=30^{\circ}$ and $C=60^{\circ}$
We deduce that $A=90^{\circ}, B=30^{\circ}$ and $\boldsymbol{c}=60^{\circ}$.

