ROMANIAN MATHEMATICAL MAGAZINE

JP.537 Find the angles of a triangle ABC if

$$\frac{\sin A + 2\sin B}{\sqrt{\sin^2 B + \sin^2 C + 2\cos A\sin B\sin C}} + 1 = \frac{3\sqrt{3}}{2\sin C}$$

Proposed by Cristian Miu – Romania

Solution 1 by proposer

 $h_a = 2R \sin B \sin C$, $h_b = 2R \sin A \sin C$ so we can write

$$\frac{h_b + 2h_a}{\sqrt{b^2 + c^2 + 2bc\cos A}} + \sin C = \frac{3\sqrt{3}}{2} \leftrightarrow \frac{h_b + 2h_a}{2m_a} + \sin C = \frac{3\sqrt{3}}{2} \leftrightarrow$$

 $\frac{F}{bm_a} + \frac{2F}{am_a} + \sin C = \frac{3\sqrt{3}}{2}$ where *F* is the area of *ABC*

Let $M \in BC$ such as BM = MC then

$$\frac{F}{bm_a} = \sin(\widehat{MAC}), \frac{2F}{am_a} = \sin(\widehat{AMC})$$

Now we can write

 $\sin(\widehat{MAC}) + \sin(\widehat{AMC}) + \sin C = \frac{3\sqrt{3}}{2}$. From here we obtain that $C = \frac{\pi}{3}$ and $AM = \frac{BC}{2}$.

But if

$$AM = MC$$
 then $A = \frac{\pi}{2}$.
So, $A = \frac{\pi}{2}$, $B = \frac{\pi}{c}$, $C = \frac{\pi}{3}$

Solution 2 by Marin Chirciu – Romania

In $\triangle ABC$ non-obtuse we have $\cos A \ge 0$, with equality for $A = 90^\circ$

$$\sin^2 B + \sin^2 C + 2\cos A \sin B \sin C \ge \sin^2 B + \sin^2 C + 2 \cdot 0 \cdot \sin B \sin C =$$
$$= \sin^2 B + \sin^2 C$$
For $A = 90^\circ \Rightarrow B + C = 90^\circ \Rightarrow \sin^2 B + \sin^2 C = 1$

We obtain:

$$LHS = \frac{\sin A + 2\sin B}{\sqrt{\sin^2 B + \sin^2 C + 2\cos A\sin B\sin C}} + 1 \le \frac{\sin A + 2\sin B}{\sqrt{1 + 2 \cdot 0}} + 1 =$$

ROMANIAN MATHEMATICAL MAGAZINE

 $=\frac{1+2\sin B}{1}+1=2\sin B+2$

We have $LHS \leq \sin B + 2$

From $RHS = \frac{3\sqrt{3}}{2 \sin c} = LHS \ge 2 \sin B + 2 \Rightarrow \frac{3\sqrt{3}}{2 \sin c} \ge 2 \sin B + 2$, with equality for $\sin B = \frac{1}{2}$ and $\sin C = \frac{\sqrt{3}}{2} \Rightarrow B = 30^{\circ}$ and $C = 60^{\circ}$ We deduce that $A = 90^{\circ}$, $B = 30^{\circ}$ and $c = 60^{\circ}$.