ROMANIAN MATHEMATICAL MAGAZINE

JP.538. In $\triangle A B C$ the following relationship holds:

$$
\frac{3}{2 R} \leq \sum \frac{\cos ^{2} \frac{A}{2}}{h_{a}} \leq \frac{3}{4 r}
$$

Proposed by Alex Szoros - Romania
Solution 1 by proposer, Solution 2 by Marin Chirciu - Romania, Solution 3 by Tapas Das - India
Solution 1 by proposer
Using the formulas

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} ; h_{a}=\frac{2 F}{a} ; R=\frac{a b c}{4 F} \text { and } 16 F^{2}=2 \sum a^{2} b^{2}-\sum a^{4}
$$

we have:

$$
\begin{align*}
\sum \frac{\cos A}{h_{a}}=\sum \frac{a}{2 F}\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right) & =\frac{1}{4 F a b c} \sum a^{2}\left(b^{2}+c^{2}-a^{2}\right)=\frac{2 \sum a^{2} b^{2}-\sum a^{4}}{16 R F^{2}}= \\
& =\frac{16 F^{2}}{16 R F^{2}}=\frac{1}{R} \tag{1}
\end{align*}
$$

Using the identity

$$
\begin{equation*}
\sum \frac{1}{h_{a}}=\frac{1}{r} \tag{2}
\end{equation*}
$$

we can write that

$$
\begin{equation*}
\sum \frac{\cos A}{h_{a}}+\sum \frac{1}{h_{a}}=\frac{1}{R}+\frac{1}{r} \Rightarrow \sum \frac{1+\cos A}{h_{a}}=\frac{1}{R}+\frac{1}{r} \Rightarrow 2 \sum \frac{\cos ^{2} \frac{A}{2}}{h_{a}}=\frac{1}{R}+\frac{1}{r} \tag{3}
\end{equation*}
$$

On the other hand from Euler's inequality $R \geq 2 r$ we deduce

$$
\frac{3}{R} \leq \frac{1}{R}+\frac{1}{r} \leq \frac{3}{2 r} \Rightarrow \frac{3}{2 R} \leq \sum \frac{\cos ^{2} \frac{A}{2}}{h_{a}} \leq \frac{3}{4 r}
$$

Solution 2 by Marin Chirciu - Romania
Lemma.
In $\triangle A B C$:

$$
\sum \frac{\cos ^{2} \frac{A}{2}}{h_{a}}=\frac{R+r}{2 R r}
$$

Proof.

romanian mathematical magazine

$$
\sum \frac{\cos ^{2} \frac{A}{2}}{h_{a}}=\sum \frac{\frac{s(s-a)}{b c}}{\frac{2 S}{a}}=\frac{s}{2 S} \sum \frac{a(s-a)}{b c}=\frac{s}{2 p r} \cdot \frac{R+r}{R}=\frac{R+r}{2 R r}
$$

Let's get back to the main problem.
Using the Lemma we obtain:
RHS.

$$
\sum \frac{\cos ^{2} \frac{A}{2}}{h_{a}}=\frac{R+r}{2 R r} \stackrel{\text { Euler }}{\leq} \frac{3}{4 r}
$$

Equality holds if and only if the triangle is equilateral.
LHS.

$$
\sum \frac{\cos ^{2} \frac{A}{2}}{h_{a}}=\frac{R+r}{2 R r} \stackrel{\text { Euler }}{\geq} \frac{3}{2 R}
$$

Equality holds if and only if the triangle is equilateral.

Solution 3 by Tapas Das - India

$$
\begin{gathered}
\text { WLOG } a \geq b \geq c \\
\cos ^{2} \frac{A}{2} \leq \cos ^{2} \frac{B}{2} \leq \cos ^{2} \frac{C}{2} \\
h_{a} \leq h_{b} \leq h_{c} \Rightarrow \frac{1}{h_{a}} \geq \frac{1}{h_{b}} \geq \frac{1}{h_{c}} \\
\therefore \sum \frac{\cos ^{2} \frac{A}{2}}{h_{a}} \frac{\text { Chebyshev }}{\leq} \frac{1}{3} \cdot \sum \cos ^{2} \frac{A}{2} \sum \frac{1}{h_{a}}=\frac{1}{3}\left(2+\frac{r}{2 R}\right) \cdot \frac{1}{r} \leq \frac{\operatorname{Euler}}{\leq} \frac{1}{3}\left(2+\frac{1}{4}\right) \cdot \frac{1}{r}=\frac{3}{4 r} \\
\sum \frac{\cos ^{2} \frac{A}{2}}{h_{a}}=\frac{1}{2 F} \sum a \cos ^{2} \frac{A}{2} \frac{A M-G M}{\geq} \frac{1}{2 F} \cdot 3\left[(a b c)\left(\cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}\right)\right]^{\frac{1}{3}}= \\
=\frac{1}{2 F} \cdot 3\left[4 R r s \cdot \frac{s^{2}}{16 R^{2}}\right]^{\frac{1}{3}}=\frac{1}{2 F} \cdot 3\left[\frac{r^{3} s^{3}}{4 R^{2} \cdot r^{2}}\right]^{\frac{1}{3}} \stackrel{E u l e r}{\geq} \frac{1}{2 F} \cdot 3\left[\frac{r^{3} s^{3}}{4 R^{2}\left(\frac{R}{2}\right)^{2}}\right]^{\frac{1}{3}}= \\
=\frac{1}{2 F} \cdot 3 \cdot \frac{r s}{R}=\frac{3}{2 R}
\end{gathered}
$$

