ROMANIAN MATHEMATICAL MAGAZINE

JP.539. In $\triangle ABC$, $O \in (AB)$, $OQ \parallel BC$, where $Q \in (AC)$. $P \in (OC)$ such that $RP \parallel BC$, where $R \in (AC)$ and $T \in (AB)$. If the lengths of the segment RT is the geometric mean of the lengths of the segments OQ and BC,

then $OP < \frac{OC}{2}$.

Proposed by Gheorghe Molea – Romania

Solution by proposer:

From $OQ \parallel BC \Rightarrow \Delta AOQ \sim \Delta ABC \Rightarrow \frac{AO}{AB} = \frac{QO}{BC} \Rightarrow OQ = \frac{AO \cdot BC}{AB}$ From $RP \parallel BC \Rightarrow \Delta CRP \sim \Delta CQO \Rightarrow \frac{RP}{QO} = \frac{CP}{CO} \Rightarrow RP = \frac{CP \cdot QO}{CO}$ From $PT \parallel BC \Rightarrow \Delta OPT \sim \Delta OCB \Rightarrow \frac{OP}{OC} = \frac{PT}{BC} \Rightarrow PT = \frac{OP \cdot BC}{OC}$ $RT = RP + PT = \frac{CP \cdot QO + OP \cdot BC}{CO}$

From $RT^2 = OQ \cdot BC$ (from hypotenuse) $\Rightarrow (CP \cdot QO + OP \cdot BC)^2 = OQ \cdot BC \cdot CO^2$

$$CP \cdot QO + OP \cdot BC = CO \cdot BC \cdot \sqrt{\frac{AO}{AB}},$$
$$CP \cdot \frac{AO \cdot BC}{AB} + OP \cdot BC = CO \cdot BC \cdot \sqrt{\frac{AO}{AB}} |: BC$$

$$CP \cdot AO + OP \cdot AB = CO \cdot \sqrt{AB \cdot AO}, \qquad CP \cdot AO + OP \cdot (AO + OB) = CO\sqrt{AB \cdot AO}$$
$$AO(CP + OP) + OP \cdot OB = CO \cdot \sqrt{AB \cdot AO}$$
$$AO \cdot CO + OP \cdot OB = CO \cdot \sqrt{AB \cdot AO}$$
$$But \sqrt{AB \cdot AO} < \frac{AB + AO}{2} \Rightarrow AO \cdot CO + OP \cdot OB < \frac{CO(AB + AO)}{2}$$
$$2AO \cdot CO + 2OP \cdot OB < CO \cdot AB + CO \cdot AO$$
$$AO \cdot CO + 2OP \cdot OB < CO (AB - AO), 2OP \cdot OB < CO \cdot OB |: OB$$

$$20P < CO \Rightarrow OP < \frac{OC}{2}$$