ROMANIAN MATHEMATICAL MAGAZINE

JP.539. In $\triangle A B C, O \in(A B), O Q \| B C$, where $Q \in(A C) . P \in(O C)$ such that $R P \| B C$, where $R \in(A C)$ and $T \in(A B)$. If the lengths of the segment $R T$ is the geometric mean of the lengths of the segments $O Q$ and $B C$, then $O P<\frac{O C}{2}$.

Proposed by Gheorghe Molea - Romania
Solution by proposer:

$$
\begin{aligned}
& \text { From } O Q \| B C \Rightarrow \triangle A O Q \sim \triangle A B C \Rightarrow \frac{A O}{A B}=\frac{Q O}{B C} \Rightarrow O Q=\frac{A O \cdot B C}{A B} \\
& \text { From } R P \| B C \Rightarrow \triangle C R P \sim \triangle C Q O \Rightarrow \frac{R P}{Q O}=\frac{C P}{C O} \Rightarrow R P=\frac{C P \cdot Q O}{C O} \\
& \text { From } P T \| B C \Rightarrow \triangle O P T \sim \triangle O C B \Rightarrow \frac{O P}{O C}=\frac{P T}{B C} \Rightarrow P T=\frac{O P \cdot B C}{O C} \\
& \qquad R T=R P+P T=\frac{C P \cdot Q O+O P \cdot B C}{C O}
\end{aligned}
$$

From $R T^{2}=O Q \cdot B C($ from hypotenuse $) \Rightarrow(C P \cdot Q O+O P \cdot B C)^{2}=O Q \cdot B C \cdot C O^{2}$

$$
C P \cdot Q O+O P \cdot B C=C O \cdot B C \cdot \sqrt{\frac{A O}{A B}}
$$

$$
\left.C P \cdot \frac{A O \cdot B C}{A B}+O P \cdot B C=C O \cdot B C \cdot \sqrt{\frac{A O}{A B}} \right\rvert\,: B C
$$

$$
C P \cdot A O+O P \cdot A B=C O \cdot \sqrt{A B \cdot A O}, \quad C P \cdot A O+O P \cdot(A O+O B)=C O \sqrt{A B \cdot A O}
$$

$$
A O(C P+O P)+O P \cdot O B=C O \cdot \sqrt{A B \cdot A O}
$$

$$
A O \cdot C O+O P \cdot O B=C O \cdot \sqrt{A B \cdot A O}
$$

$$
\text { But } \sqrt{A B \cdot A O}<\frac{A B+A O}{2} \Rightarrow A O \cdot C O+O P \cdot O B<\frac{C O(A B+A O)}{2}
$$

$$
2 A O \cdot C O+2 O P \cdot O B<C O \cdot A B+C O \cdot A O
$$

$A O \cdot C O+2 O P \cdot O B<C O \cdot A B, 2 O P \cdot O B<C O(A B-A O), 2 O P \cdot O B<C O \cdot O B \mid: O B$

$$
2 O P<C O \Rightarrow O P<\frac{O C}{2}
$$

