ROMANIAN MATHEMATICAL MAGAZINE

SP. 534 If the lengths a, b, c of the sides of a triangle are the roots of the equation $k x^{3}-l x^{2}+9 k x-l=0 \quad(k \cdot l \neq 0)$, then find the area of the triangle.

Proposed by George Apostolopoulos - Messolonghi - Greece

Solution 1 by proposer

From the Cartan - Viete formula's, we have $a+b+c=\frac{l}{k}, a b+b c+c a=9, a b c=\frac{l}{k}$. So

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a b+b c+c a}{a b c}=\frac{9}{\frac{l}{k}}=\frac{9 k}{l} \text {. Now, we have } \frac{a+b+c}{3}=\frac{l}{3 k^{\prime}} \text {, and }
$$

$\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{3}{\frac{9 k}{l}}=\frac{l}{3 k^{k}}$, namely $\frac{a+b+c}{3}=\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}$. So, the result follows immediately from the fact
that the AM-HM inequality becomes equality iff $\boldsymbol{a}=\boldsymbol{b}=\boldsymbol{c}$. Namely the triangle is equilateral. From $a b+b c+c a=9$, we have $\boldsymbol{a}^{2}=3$, and the area $=\frac{a^{2} \sqrt{3}}{4}=\frac{3 \sqrt{3}}{4}$.

Solution 2 by Martin Celli-Mexico

$$
\begin{gathered}
\text { For } x=a, b, c \text { we have } \\
k x\left(x^{2}+9\right)=l\left(x^{2}+1\right) \\
F(x)=\ln \left(\frac{l}{k}\right), \text { where } F(x)=\ln \left(\frac{x\left(x^{2}+9\right)}{x^{2}+1}\right)(x>0) .
\end{gathered}
$$

We can easily obtain the following expression:

$$
F^{\prime}(x)=\frac{\left(x^{2}-3\right)^{2}}{x\left(x^{2}+9\right)\left(x^{2}+1\right)}>0 \text { for } x \neq \sqrt{3} .
$$

Thus, the function F is strictly increasing. As $F(a)=F(b)=F(c)$, we have $a=b=c$: the triangle is equilateral, its area is $\boldsymbol{a}^{2} \sqrt{3} / 4$. On the other hand, we have

$$
x^{3}-3 a x^{2}+3 a^{2} x-a^{3}=(x-a)^{3}=(x-a)(x-b)(x-c)=x^{3}-\frac{l}{k} x^{2}+9 x-\frac{l}{k}
$$

So $3 a^{2}=9$, the area of the triangle is $3 \sqrt{3} / 4$.

Solution 3 by Marin Chirciu - Romania

By Viete relationships we have $a+b+c=\frac{l}{k}, a b+b c+c a=9, a b c=\frac{l}{k}$
Using the identity in triangle $16 S^{2}=2 \sum b^{2} c^{2}-\sum a^{4}$.

ROMANIAN MATHEMATICAL MAGAZINE

We have $\sum b^{2} c^{2}=81-\frac{2 l^{2}}{k^{2}}$ and $\sum a^{4}=\frac{l^{4}}{k^{4}}-\frac{32 l^{2}}{k^{2}}+162$ which follows from:

$$
\begin{gathered}
\sum b^{2} c^{2}=\left(\sum b c\right)^{2}-2 a b c \sum a=9^{2}-2 \cdot \frac{l}{k} \cdot \frac{l}{k}=81-\frac{2 l^{2}}{k^{2}} \\
(a+b+c)^{4}=\sum a^{4}+6 \sum b^{2} c^{2}+4 \sum b c\left(b^{2}+c^{2}\right)+12 a b c \sum a \\
\sum b c\left(b^{2}+c^{2}\right)=\sum a^{2} \sum b c-a b c \sum a, \\
\sum b c\left(b^{2}+c^{2}\right)=\left(\frac{l^{2}}{k^{2}}-18\right) \cdot 9-\frac{l^{2}}{k^{2}}=\frac{8 l^{2}}{k^{2}}-162 \\
\sum a^{2}=\left(\sum a\right)^{2}-2 \sum b c=\frac{l^{2}}{k^{2}}-2 \cdot 9=\frac{l^{2}}{k^{2}}-18 \\
=\sum a^{4}+486-\frac{12 l^{2}}{k^{2}}+\frac{32 l^{2}}{k^{2}}-648+\frac{12 l^{2}}{k^{2}}= \\
k^{4}= \\
=\frac{32 l^{2}}{k^{2}}-162 \Rightarrow \sum a^{4}+6\left(81-\frac{2 l^{2}}{k^{2}}\right)+4\left(\frac{8 l^{2}}{k^{2}}-162\right)+\frac{l^{4}}{k^{4}}-\frac{32 l^{2}}{k^{2}}+162 \\
W e ~ o b t a i n ~ \\
16 S^{2}=2 \sum b^{2} c^{2}-\sum a^{4}= \\
=2\left(81-\frac{2 l^{2}}{k^{2}}\right)-\left(\frac{l^{4}}{k^{4}}-\frac{32 l^{2}}{k^{2}}+162\right)=\frac{28 l^{2}}{k^{2}}-\frac{l^{4}}{k^{3}} \Rightarrow \\
\Rightarrow 16 S^{2}= \\
k^{2}-\frac{28 l^{2}}{k^{4}} \Leftrightarrow S^{2}=\frac{1}{16}\left(\frac{28 l^{2}}{k^{2}}-\frac{l^{4}}{k^{4}}\right) \Leftrightarrow S=\frac{1}{4} \sqrt{\frac{28 l^{2}}{k^{2}}-\frac{l^{4}}{k^{4}}}
\end{gathered}
$$

It is necessary the condition $\frac{28 l^{2}}{k^{2}}-\frac{l^{4}}{k^{4}}>0 \Leftrightarrow \frac{1}{k}<2 \sqrt{7}$

