ROMANIAN MATHEMATICAL MAGAZINE

SP. 537 Solve for real numbers:

$$
3 e^{x}+3 e^{3 x}+1=4 e^{2 x}+3 \cdot \sqrt[3]{e^{4 x}}
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by proposer

$$
\begin{gathered}
3 e^{x}+3 e^{3 x}+1=\left(2 e^{x}+2 e^{3 x}\right)+\left(e^{x}+e^{3 x}+1\right)= \\
=2\left(e^{x}+e^{3 x}\right)+\left(e^{x}+e^{3 x}+1\right) \stackrel{A M-G M}{\geq} 2 \cdot 2 \sqrt{e^{x} \cdot e^{3 x}}+3 \cdot \sqrt[3]{e^{x} \cdot e^{3 x} \cdot 1}= \\
=4 \sqrt{e^{4 x}}+3 \sqrt[3]{e^{4 x}}=4 e^{2 x}+3 \sqrt[3]{e^{4 x}}
\end{gathered}
$$

Equality holds for: $e^{x}=e^{3 x}$ and $e^{x}=e^{3 x}=1$. Solution: $x=0$

Solution 2 by Marin Chiricu - Romania

We have $3 e^{x}+3 e^{3 x}+1=4 e^{2 x}+3 \sqrt[3]{e^{4 x}} \Leftrightarrow 3 e^{x}+3 e^{3 x}+1=4 e^{2 x}+3 e^{\frac{4 x}{3}}$
With the substitution $e^{\frac{x}{3}}=\boldsymbol{t}>\mathbf{0}$ the equation becomes
$3 t^{3}+3 t^{9}+1=4 t^{6}+3 t^{4} \Leftrightarrow 3 t^{9}-4 t^{6}-3 t^{4}+3 t^{3}+1=0 \Leftrightarrow$ $\Leftrightarrow(t-1)^{2}\left(3 t^{7}+6 t^{6}+9 t^{5}+8 t^{4}+7 t^{3}+3 t^{2}+2 t+1\right)=0 \Leftrightarrow t=1$.

Returning to the notations it follows $e^{\frac{x}{3}}=1 \Leftrightarrow x=0$
Reciprocal $\boldsymbol{x}=\mathbf{0}$ verify the equation.
We deduce that $\boldsymbol{x}=\mathbf{0}$ is the unique solution of the equation.

