ROMANIAN MATHEMATICAL MAGAZINE

SP. 538 In acute $\triangle A B C$ the following relationship holds:

$$
36 \leq 4\left(\sum_{c y c} \tan A \tan B\right) \leq 9+\prod_{c y c} \tan ^{2} A
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by proposer, Solution 2 by Marin Chirciu - Romania
Solution 1 by proposer

$$
\begin{gathered}
\frac{1}{3} \sum_{c y c} \tan A \stackrel{A M-H M}{\geq} \frac{3}{\sum_{c y c} \frac{1}{\tan A}} \\
\left(\sum_{c y c} \tan A\right) \cdot\left(\sum_{c y c} \frac{1}{\tan A}\right) \geq 9 \\
\prod_{c y c} \tan A \cdot \frac{\tan A \tan B+\tan B \tan C+\tan C \tan A}{\prod_{c y c} \tan A} \geq 9 \\
\sum_{c y c} \tan A \tan B \geq 9 \Rightarrow 4 \sum_{c y c} \tan A \tan B \geq 36 \\
B y \text { Padoa's inequality: } \\
\prod_{c y c}(\tan A+\tan B-\tan C) \leq \prod_{c y c} \tan A \quad \text { (1) } \\
\text { Denote: } u=\sum_{c y c} \tan A=\prod_{c y c} \tan A>0
\end{gathered}
$$

By (1):

$$
\prod_{c y c}(u-\tan A) \leq u
$$

$$
u^{3}-2\left(\sum_{c y c} \tan A\right) \cdot u^{2}+4\left(\sum_{c y c} \tan A \tan B\right) \cdot u-8 u \leq u
$$

$$
u^{3}-2 u^{3}+4\left(\sum_{c y c} \tan A \tan B\right) \cdot u \leq 9 u
$$

$$
4\left(\sum_{c y c} \tan A \tan B\right) \cdot u \leq 9 u+u^{3}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{gathered}
4 \sum_{c y c} \tan A \tan B \leq u^{2}+9 \\
4 \sum_{c y c} \tan A \tan B \leq 9+\prod_{c y c} \tan ^{2} A
\end{gathered}
$$

Equality holds for:

$$
\tan A=\tan B=\tan C \Rightarrow A=B=C=\frac{\pi}{3}
$$

Solution 2 by Marin Chirciu - Romania

Changing the variable $A \rightarrow \frac{\pi}{2}-A$, the inequality from enunciation is equivalent with:

$$
36 \leq 4 \sum \cot \frac{A}{2} \cot \frac{B}{2} \leq 9+\prod \cot ^{2} \frac{A}{2}
$$

Using the inequalities in triangle $\sum \cot \frac{A}{2} \cot \frac{B}{2}=\frac{4 R+r}{r}$ and $\Pi \cot \frac{A}{2}=\frac{s}{r}$
First inequality.

$$
36 \leq 4 \sum \cot \frac{A}{2} \cot \frac{B}{2} \Leftrightarrow \sum \cot \frac{A}{2} \cot \frac{B}{2} \geq 9 \Leftrightarrow \frac{4 R+r}{r} \geq 9 \Leftrightarrow R \geq 2 r \text {, (Euler) }
$$

Equality holds if and only if the triangle is equilateral.
Second inequality.

$$
4 \sum \cot \frac{A}{2} \cot \frac{B}{2} \leq 9+\Pi \cot ^{2} \frac{A}{2} \Leftrightarrow 4 \cdot \frac{4 R+r}{r} \geq 9+\frac{s^{2}}{r^{2}} \Leftrightarrow s^{2} \geq 16 R r-5 r^{2}, \text { (Gerretsen) }
$$

Equality holds if and only if the triangle is equilateral.

