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𝛀 = 𝐥𝐢𝐦
𝒏→∞

(
𝟏

√(𝟐𝒏 − 𝟏)‼
𝒏

−
𝟏

√(𝟐𝒏 + 𝟏)‼
𝒏+𝟏

) ⋅ 𝒆𝟐𝑯𝒏 
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Solution 1 by proposers 
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𝐥𝐢𝐦
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𝒆𝑯𝒏

𝒏
= 𝐥𝐢𝐦

𝒏→∞
𝒆− 𝐥𝐨𝐠 𝒏+𝑯𝒏 = 𝒆𝜸  

𝐥𝐢𝐦
𝒏→∞

𝒆𝟐𝑯𝒏

𝒏𝟐
= 𝒆𝟐𝜸 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

( √(𝟐𝒏 + 𝟏)‼
𝒏+𝟏

− √(𝟐𝒏 − 𝟏)‼
𝒏
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𝒏
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Solution 2 by Angel Plaza-Spain 

𝐥𝐢𝐦
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𝒆𝑯𝒏

𝒏
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Hence, 𝛀 = 𝒆𝟐𝜸 ⋅ 𝐥𝐢𝐦
𝒏→∞
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𝟏

√(𝟐𝒏−𝟏)‼
𝒏 −

𝟏

√(𝟐𝒏+𝟏)‼
𝒏+𝟏 ) ⋅ 𝒏𝟐 

By using that [1] 
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Then, 
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(𝟐𝒏 + 𝟏) √𝟐𝒏+𝟏(𝒏 + 𝟏)𝒏+𝟏𝒆−𝒏−𝟏
𝒏+𝟏

√(𝟐𝒏 + 𝟐)𝟐𝒏+𝟐𝒆−𝟐𝒏−𝟐
𝒏+𝟏
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𝒆
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Therefore: 

 𝛀 = 𝒆𝟐𝜸 ⋅
𝒆

𝟐
=

𝟏

𝟐
𝒆𝟏+𝟐𝜸 
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