ROMANIAN MATHEMATICAL MAGAZINE

UP. 530 Find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt[n]{(2 n-1)!!}}-\frac{1}{\sqrt[n+1]{(2 n+1)!!}}\right) \cdot e^{2 H_{n}}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania

Solution 1 by proposers

$$
\begin{gathered}
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{n}{\sqrt[n]{(2 n-1)!!}}= \lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{n}}{(2 n-1)!!}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{n+1}}{(2 n+1)!!} \cdot \frac{(2 n-1)!!}{n^{n}}= \\
&= \lim _{n \rightarrow \infty} \frac{(n+1)^{n}}{n^{n}} \cdot \frac{(2 n-1)!!}{(2 n-1)!!} \cdot \frac{n+1}{2 n+1}=\frac{e}{2} \\
& \lim _{n \rightarrow \infty} \frac{e^{H_{n}}}{n}=\lim _{n \rightarrow \infty} e^{-\log n+H_{n}}=e^{\gamma} \\
& \Omega=\lim _{n \rightarrow \infty}(\sqrt[n+1]{(2 n+1)!!}-\sqrt[n]{(2 n-1)!!}) \cdot \frac{n}{\sqrt[n]{(2 n-1)!!}} \cdot \frac{n+1}{\sqrt[n+1]{(2 n+1)!!}} \cdot \frac{e^{2 H_{n}}}{n^{2}} \cdot \frac{n+1}{n}= \\
&=\frac{2}{e} \cdot \frac{e}{2} \cdot \frac{e}{2} \cdot e^{2 \gamma} \cdot 1=\frac{1}{2} e^{2 \gamma+1}
\end{aligned}
\end{gathered}
$$

Solution 2 by Angel Plaza-Spain

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{e^{H_{n}}}{n}=\lim _{n \rightarrow \infty} \frac{e^{H_{n}}}{e^{\ln n}}=\lim _{n \rightarrow \infty} e^{H_{n}-\ln n}=e^{\gamma} . \text { Therefore, } \lim _{n \rightarrow \infty} \frac{e^{2 H_{n}}}{n^{2}}=\lim _{n \rightarrow \infty}\left(\frac{e^{H_{n}}}{n}\right)^{2}=e^{2 \gamma} \\
\text { Hence, } \Omega=e^{2 \gamma} \cdot \lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt[n]{(2 n-1)!!}}-\frac{1}{\sqrt[n+1]{(2 n+1)!!}}\right) \cdot n^{2}
\end{gathered}
$$

By using that [1]

$$
\lim _{n \rightarrow \infty}\left(\frac{(n+1)^{2}}{\sqrt[n+1]{(2 n+1)!!}}-\frac{n^{2}}{\sqrt[n]{(2 n+1)!!}}\right)=\frac{e}{2}
$$

Then,

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt[n]{(2 n-1)!!}}-\frac{1}{\sqrt[n+1]{(2 n+1)!!}}\right) \cdot n^{2}=-\frac{e}{2}+\lim _{n \rightarrow \infty} \frac{2 n+1}{\sqrt[n+1]{(2 n+1)!!}} \\
=-\frac{e}{2}+\lim _{n \rightarrow \infty} \frac{(2 n+1) \sqrt[n+1]{(2 n+2)!!}}{\sqrt[n+1]{(2 n+2)!}}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{gathered}
=-\frac{e}{2}+\lim _{n \rightarrow \infty} \frac{(2 n+1)^{n+1} \sqrt{2^{n+1}(n+1)^{n+1} e^{-n-1}}}{\sqrt[n+1]{(2 n+2)^{2 n+2} e^{-2 n-2}}} \\
=-\frac{e}{2}+\lim _{n \rightarrow \infty} \frac{(2 n+1) 2(n+1) e^{-1}}{(2 n+2)^{2} e^{-2}}=-\frac{e}{2}+e=\frac{e}{2} \\
\text { Therefore: }
\end{gathered}
$$

$$
\Omega=e^{2 \gamma} \cdot \frac{e}{2}=\frac{1}{2} e^{1+2 \gamma}
$$

Reference:
[1] D.M. Bătinețu - Giurgiu, Daniel Sitaru,Neculai Stanciu- 120 Years of Lalescu Sequences, RMM 29 (2021). Available at https://www.ssmrmh.ro/wp-content/uploads/2020/02/120-YEARS-OF-LALESCU-SEQUENCES.pdf

