ROMANIAN MATHEMATICAL MAGAZINE

UP. 533 Calculate the integral:

$$
\int_{-1}^{1} \frac{\arccos x}{\sqrt{4 x^{4}+x^{2}+4}} d x
$$

Proposed by Vasile Mircea Popa - Romania

Solution by proposer

We make the notation: $A=\int_{-1}^{1} \frac{\arccos x}{\sqrt{4 x^{4}+x^{2}+4}} d x$.
We also consider the integral: $B=\int_{-1}^{1} \frac{\arcsin x}{\sqrt{4 x^{4}+x^{2}+4}} d x$
We have:

$$
A+B=\int_{-1}^{1} \frac{\arccos x+\arcsin x}{\sqrt{4 x^{4}+x^{2}+4}} d x=\frac{\pi}{2} \int_{-1}^{1} \frac{1}{\sqrt{4 x^{4}+x^{2}+4}} d x
$$

But, we have:

$$
\int_{-1}^{1} \frac{1}{\sqrt{4 x^{4}+x^{2}+4}} d x=2 \int_{0}^{1} \frac{1}{\sqrt{4 x^{4}+x^{2}+4}} d x
$$

because the function under the integral sign is even.
We are going to calculate the integral:

$$
C=\int_{0}^{1} \frac{1}{\sqrt{4 x^{4}+x^{2}+4}} d x
$$

We will show that the C integral can be expressed using the complete elliptic integral of the first kind.

The complete elliptic integral of the first kind is defined by the relationship:

$$
K(k)=\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1-k^{2} \sin ^{2} \theta}} d \theta, \text { with }-1<k<1 .
$$

Substitute:

$$
t=\tan \frac{\theta}{2}, \text { so } \sin \theta=\frac{2 t}{1+t^{2}} \text { and } d \theta=\frac{2}{1+t^{2}} d t .
$$

We have:

ROMANIAN MATHEMATICAL MAGAZINE

$$
K(k)=\int_{0}^{1} \frac{1}{\sqrt{1-k^{2} \frac{4 t^{2}}{\left(1+t^{2}\right)^{2}}}} 2 \frac{1}{1+t^{2}} d t=2 \int_{0}^{1} \frac{1}{\sqrt{t^{4}+\left(2-4 k^{2}\right) t^{2}+1}} d t
$$

We have:

$$
C=\frac{1}{2} \int_{0}^{1} \frac{1}{\sqrt{x^{4}+\frac{1}{4} x^{2}+1}} d x
$$

We put the condition:

$$
2-4 k^{2}=\frac{1}{4}, \text { so } k=\frac{\sqrt{7}}{4}(\text { we choose } k>0) .
$$

We obtain:

$$
C=\frac{1}{2} \cdot \frac{1}{2} \cdot K\left(\frac{\sqrt{7}}{4}\right)
$$

The integral B is equal to zero, because the function under the integral sign is odd.

$$
\text { So, we have: } A=\frac{\pi}{2} \cdot 2 C
$$

We obtained the value of the integral required in the problem statement:

$$
A=\frac{\pi}{4} K\left(\frac{\sqrt{7}}{4}\right) .
$$

