Weighted Nesbitt's inequality

Dorin Marghidanu, d.marghidanu@gmail.com

Abstract

In this short note, a weighted version is presented and at in the same time an extension of Nesbitt's inequality. Consequences of this inequality are also presented

Key words : Nesbitt's inequality, convex function, Jensen's inequality, weights
2020 Mathematics Subject Classification : 26D15
It is known in mathematical practice and in mathematical literature - Nesbitt's famous and beautiful inequality, [1]:

$$
\begin{equation*}
\text { - if } a, b, c>0 \text {, then, } \quad \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{3}{2} \tag{N}
\end{equation*}
$$

For this famous inequality, there are dozens of proofs, extensions, generalizations and various refinements. Our intention is to obtain an inequality, when in the left member of inequality (N) weights appear. For this we will use Jensen's weighted inequality:

- if $\boldsymbol{f}: \mathbf{I} \subset \mathbb{R} \longrightarrow \mathbb{R}$ is a convex function, I - interval, then for any $\boldsymbol{x}_{\boldsymbol{k}} \in \mathbf{I}$ and any weights $\boldsymbol{w}_{\boldsymbol{k}}>\mathbf{0}, \boldsymbol{k} \in\{\mathbf{1}, \mathbf{2}, \cdots, \boldsymbol{n}\}$, for which we have $\sum_{k=1}^{n} \boldsymbol{w}_{\boldsymbol{k}} \boldsymbol{x}_{\boldsymbol{k}} \in \mathbf{I}, \sum_{k=1}^{n} \boldsymbol{w}_{\boldsymbol{k}}=\mathbf{1}$, we have the inequality $\quad \sum_{k=1}^{n} w_{k} f\left(x_{k}\right) \geq f\left(\sum_{k=1}^{n} w_{k} x_{k}\right)$, with equality if and only if $x_{1}=x_{2}=\ldots=x_{n}$.

We will thus have the following statement ,

1. Proposition (weighted Nesbitt's inequality)

For any $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>\mathbf{0}$ and any weights $\boldsymbol{m}, \boldsymbol{n}, \boldsymbol{p}>\mathbf{0}$ with $\boldsymbol{m}+\boldsymbol{n}+\boldsymbol{p}=\mathbf{1}$ holds the inequality,

$$
m \cdot \frac{a}{b+c}+n \cdot \frac{b}{c+a}+p \cdot \frac{c}{a+b} \geq \frac{m a+n b+p c}{(n+p) a+(p+m) b+(m+n) c}
$$

with equality if and only if $\boldsymbol{a}=\boldsymbol{b}=\boldsymbol{c}$.

Proof

With the notation $\mathrm{S}:=\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}$ and remarking that $\frac{\boldsymbol{a}}{\boldsymbol{b}+\boldsymbol{c}}=\frac{\boldsymbol{a}}{\boldsymbol{S}-\boldsymbol{a}}$, etc.
let be the function $\boldsymbol{f}: \mathbf{(0 , S}) \longrightarrow \mathbb{R}, f(\boldsymbol{x})=\frac{\boldsymbol{x}}{\boldsymbol{S}-\boldsymbol{x}}$, for which we have

$$
f^{\prime}(x)=\frac{\boldsymbol{S}}{(\boldsymbol{S}-\boldsymbol{x})^{2}}, \quad f^{\prime \prime}(x)=\frac{2 \boldsymbol{S}}{(\boldsymbol{S}-\boldsymbol{x})^{\mathbf{3}}} \geq 0, \text { so the function is convex. }
$$

After a slight preparation, and then with an application of Jensen's weighted inequality for case $\boldsymbol{n}=\mathbf{3}$ and weights $\boldsymbol{m}, \boldsymbol{n}, \boldsymbol{p}>\mathbf{0}$, we have:

$$
\begin{aligned}
& m \cdot \frac{a}{b+c}+n \cdot \frac{b}{c+a}+p \cdot \frac{c}{a+b}=m \cdot f(a)+n \cdot f(b)+p \cdot f(c) \geq \\
& \text { Jensen } \\
& \quad \geq f(m a+n b+p c)=\frac{m a+n b+p c}{S-(m a+n b+p c)}=\frac{m a+n b+p c}{(1-m) a+(1-n) b+(1-p) c}= \\
& =\frac{m a+n b+p c}{(n+p) a+(p+m) b+(m+n) c} \cdot
\end{aligned}
$$

2. Remark

Taking $\boldsymbol{m}=\boldsymbol{n}=\boldsymbol{p}(=\mathbf{1 / 3})$ in Nesbitt's weighted inequality $(\boldsymbol{w} \mathbf{N})$ we get Nesbitt's classical inequality (N).
We exemplify with the following simple application,

3. Corolar

For any $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>\mathbf{0}$ holds the inequality,

$$
2 \cdot \frac{a}{b+c}+3 \cdot \frac{b}{c+a}+4 \cdot \frac{c}{a+b} \geq \frac{2 a+3 b+4 c}{7 a+6 b+5 c}
$$

with equality if and only if $\boldsymbol{a}=\boldsymbol{b}=\boldsymbol{c}$.

Proof

Choosing in Nesbitt's weighted inequality ($\boldsymbol{w} \mathbf{N}$) the weights, $\boldsymbol{m}=\mathbf{2} / \mathbf{9}, \boldsymbol{n}=\mathbf{3} / \mathbf{9}, \boldsymbol{p}=\mathbf{4} / \mathbf{9}$, for which we obviously have $\boldsymbol{m}+\boldsymbol{n}+\boldsymbol{p}=\mathbf{1}$, we obtain the inequality from corollary .

4. Proposition (generalization of the weighted Nesbitt's inequality), [4], b)

For any $\boldsymbol{a}_{\mathbf{1}}, \boldsymbol{a}_{\mathbf{2}}, \ldots, \boldsymbol{a}_{\boldsymbol{n}}>\mathbf{0}$ and any weights $\boldsymbol{w}_{\mathbf{1}}, \boldsymbol{w}_{\mathbf{2}}, \ldots, \boldsymbol{w}_{\boldsymbol{n}}>\mathbf{0}$, with $\boldsymbol{w}_{\mathbf{1}}+\boldsymbol{w}_{\mathbf{2}}+\ldots+\boldsymbol{w}_{\boldsymbol{n}}=\mathbf{1}$, holds the inequality,

$$
\begin{align*}
& w_{1} \cdot \frac{a_{1}}{a_{2}+a_{3}+\ldots+a_{n}}+w_{2} \cdot \frac{a_{2}}{a_{1}+a_{3}+\ldots+a_{n}}+\ldots+w_{n} \cdot \frac{a_{n}}{a_{1}+a_{2}+\ldots+a_{n-1}} \geq \tag{gwN}\\
& \geq \frac{w_{1} a_{1}+w_{2} a_{2}+\ldots+w_{n} a_{n}}{\left(1-w_{1}\right) a_{1}+\left(1-w_{2}\right) a_{2}+\ldots+\left(1-w_{n}\right) a_{n}} .
\end{align*}
$$

with equality if and only if, $\boldsymbol{a}_{1}=\boldsymbol{a}_{\mathbf{2}}=\ldots=\boldsymbol{a}_{\boldsymbol{n}}$.

Proof

With the notation $\mathbf{S}:=\boldsymbol{a}_{\mathbf{1}}+\boldsymbol{a}_{\mathbf{2}}+\ldots+\boldsymbol{a}_{\boldsymbol{n}}$, we also consider here the function
$\boldsymbol{f}:(\mathbf{0}, \mathbf{S}) \longrightarrow \mathbb{R}, \boldsymbol{f}(\boldsymbol{x})=\frac{\boldsymbol{x}}{\boldsymbol{S}-\boldsymbol{x}}$, which (as we saw in the proof of Proposition 1)
is a convex function on ($\mathbf{0}, \mathbf{S}$).
After an easy preparation, and then with the application of Jensen's weighted inequality (J), we have :

$$
\begin{aligned}
& w_{1} \cdot \frac{a_{1}}{a_{2}+a_{3}+\ldots+a_{n}}+w_{2} \cdot \frac{a_{2}}{a_{1}+a_{3}+\ldots+a_{n}}+\ldots+w_{n} \cdot \frac{a_{n}}{a_{1}+a_{2}+\ldots+a_{n-1}}= \\
& =w_{1} \cdot \frac{a_{1}}{S-a_{1}}+w_{2} \cdot \frac{a_{2}}{S-a_{2}}+\ldots+w_{n} \cdot \frac{a_{n}}{S-a_{n}}= \\
& =w_{1} \cdot f\left(a_{1}\right)+w_{2} \cdot f\left(a_{2}\right)+\ldots+w_{n} \cdot f\left(a_{n}\right) \geq \\
& \text { Jensen } \\
& \quad \geq f\left(w_{1} a_{1}+w_{2} a_{2}+\ldots+w_{n} a_{n}\right)=\frac{w_{1} a_{1}+w_{2} a_{2}+\ldots+w_{n} a_{n}}{S-\left(w_{1} a_{1}+w_{2} a_{2}+\ldots+w_{n} a_{n}\right)}= \\
& =\frac{w_{1} a_{1}+w_{2} a_{2}+\ldots+w_{n} a_{n}}{\left(1-w_{1}\right) a_{1}+\left(1-w_{2}\right) a_{2}+\ldots+\left(1-w_{n}\right) a_{n}} .
\end{aligned}
$$

5. Remark

Taking $\boldsymbol{w}_{\mathbf{1}}=\boldsymbol{w}_{\mathbf{2}}=\ldots=\boldsymbol{w}_{\boldsymbol{n}}=\mathbf{1} / \boldsymbol{n}$ in the generalization of Nesbitt's weighted inequality $(\mathbf{g} \boldsymbol{w} \mathbf{N})$ the generalization of Nesbitt's classical inequality (gN) is obtained:

$$
\begin{equation*}
\frac{a_{1}}{a_{2}+a_{3}+\ldots+a_{n}}+\frac{a_{2}}{a_{1}+a_{3}+\ldots+a_{n}}+\ldots+\frac{a_{n}}{a_{1}+a_{2}+\ldots+a_{n-1}} \geq \frac{n}{n-1} \tag{gN}
\end{equation*}
$$

(Olympiad, German Democratic Republic , 1967)..
For $\boldsymbol{n}=\mathbf{3}$, the classical Nesbitt's inequality (N) is obtained .
By customizing the weights in Proposition 4, numerous inequalities can be obtained. Here is an example:
6. Corolar , [4], a)

For any $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}>\mathbf{0}$, holds the inequality,

$$
\frac{a}{b+c+d}+2 \cdot \frac{b}{c+d+a}+3 \cdot \frac{c}{d+a+b}+4 \cdot \frac{d}{a+b+c} \geq 10 \cdot \frac{a+2 b+3 c+4 d}{9 a+8 b+7 c+6 d}
$$

with equality if and only if $\boldsymbol{a}=\boldsymbol{b}=\boldsymbol{c}=\boldsymbol{d}$.

Proof

Taking in $(\mathbf{g} \boldsymbol{w} \mathbf{N}), \boldsymbol{n}=\mathbf{4}$, the weights : $\boldsymbol{w}_{\mathbf{1}}=\mathbf{1} / \mathbf{1 0}, \boldsymbol{w}_{\mathbf{2}}=\mathbf{2} / \mathbf{1 0}, \boldsymbol{w}_{\mathbf{3}}=\mathbf{3} / \mathbf{1 0}, \boldsymbol{w}_{\mathbf{4}}=\mathbf{4} / \mathbf{1 0}$, for which we obviously have $\boldsymbol{w}_{\mathbf{1}}+\boldsymbol{w}_{\mathbf{2}}+\boldsymbol{w}_{\mathbf{3}}+\boldsymbol{w}_{\mathbf{4}}=\mathbf{1}$, the inequality from the statement is obtained.

References:

[1] Nesbitt, A.M. , Problem 15114 , "Educational Times", 55, 1902
[2] Jensen, J. L. W. V., "Sur les fonctions convexes et les inégalités entre les valeurs moyennes", Acta Mathematica. 30 (1), pp. 175-193, 1906.
[3] Mărghidanu Dorin, (A proposal for the weighted Nesbitt's inequality), Proposed problem, Mathematical Inequalities, 12 Sept., 2023. https://www.facebook.com/photo/?fbid=7026720560720325\&set=gm. 3571355533152482 \&idorvanity $=1486244404996949$
[4] Mărghidanu Dorin, (A proposal for the generalized weighted Nesbitt's inequality), Proposed problem, Mathematics for Learning, 16 Sept., 2023.
https://www.facebook.com/photo/?fbid=7041622325896815\&set=gm. $3663112580577025 \&$ \&idorvanity $=2692404370981189$

