ROMANIAN MATHEMATICAL MAGAZINE

Prove that 7yellow=23pink
Proposed by Jafar Nikpour-Iran

Solution by Eric Cismaru-Romania

Let x be the length of the sides of the square. It is sufficient to show that $S=\frac{7 x^{2}}{30}$. Because $M N P Q$ is a square, $S=M N^{2}+4 \cdot\left(\mathcal{A}_{\Delta A Q M}-\mathcal{A}_{A D F G}\right)$. By Menelaus's Theorem in $\triangle T B S$ (where $B S=S C$), with $A-M-C$, we have:

ROMANIAN MATHEMATICAL MAGAZINE

$$
\frac{T A}{B A} \cdot \frac{B C}{S C} \cdot \frac{S M}{T M}=1 \Leftrightarrow \frac{A M}{C M}=\frac{1}{2} \Rightarrow A M=A Q=\frac{A C}{3}=\frac{x \sqrt{5}}{6}
$$

Then, $\boldsymbol{G M}=A M-A G=\frac{x \sqrt{5}}{6}-\frac{x \sqrt{5}}{10}=\frac{x \sqrt{5}}{15}$, and $\boldsymbol{G} M+\boldsymbol{G Q}=\frac{x \sqrt{5}}{5} \Rightarrow \boldsymbol{G} \boldsymbol{Q}=\frac{2 x \sqrt{5}}{15}$, so we obtain that $M Q=\sqrt{G M^{2}+G Q^{2}}=\frac{\pi}{3}$
We also have $\frac{A G}{A M}=\frac{d(A ; G D)}{d(A ; M Q)}=\frac{3}{5} \Rightarrow d(A ; G D)=\frac{x}{5} \Rightarrow d(G ; M Q)=\frac{2 x}{15}$, yielding to $G D=\frac{x}{5}$.
Finally, we have:
$S=M N^{2}+4 \cdot\left(\mathcal{A}_{\Delta A Q M}-\mathcal{A}_{A D F G}\right) \Leftrightarrow S=\frac{x^{2}}{9}+4 \cdot\left(\frac{x^{2}}{18}-\frac{A F \cdot G D}{2}\right)$,
Leading us to $S=\frac{x^{2}}{9}+4 \cdot\left(\frac{x^{2}}{18}-\frac{x^{2}}{40}\right)=\frac{7 x^{2}}{30}$, so the proof is finished.

