ROMANIAN MATHEMATICAL MAGAZINE

If: $N X\|A Q\| P Y \| \Rightarrow$ Prove that:

$$
\frac{X N}{N Z} \cdot \frac{Z P}{P Y}=1
$$

Proposed by Romeo Cătălinoiu - Romania

Solution by Mirsadix Muzefferov - Azerbaijan

$\triangle A B E$ and $\triangle B N X$ (They are similar)

$$
\begin{equation*}
\text { Then: } \frac{X N}{A E}=\frac{B N}{B A} \tag{1}
\end{equation*}
$$

Also, $\triangle A E C$ and $\triangle P Y C$ (are similar)

$$
\begin{equation*}
\text { Then: } \frac{A E}{P Y}=\frac{A C}{P C} \tag{2}
\end{equation*}
$$

Multiply (1) and (2) side by side:

$$
\begin{equation*}
\frac{X N}{A E} \cdot \frac{A E}{P Y}=\frac{B N}{B A} \cdot \frac{A C}{P C} \Rightarrow \frac{X N}{P Y}=\frac{B N}{B A} \cdot \frac{A C}{P C} \tag{3}
\end{equation*}
$$

On the other hand, according to Tanasis Gakopoulos theorem, in $\triangle A B C$...

$$
\begin{equation*}
\frac{N Z}{Z P}=\frac{B N}{A B}: \frac{C P}{A C} \text { or } \frac{Z P}{N Z}=\frac{A B}{B N} \cdot \frac{C P}{A C} \tag{4}
\end{equation*}
$$

Multiply (3) and (4) side by side:

$$
\frac{X N}{P Y} \cdot \frac{N Z}{Z P}=\left(\frac{B N}{B A} \cdot \frac{A C}{P C}\right) \cdot\left(\frac{A B}{B N} \cdot \frac{C P}{A C}\right)=1
$$

