ROMANIAN MATHEMATICAL MAGAZINE

In $\triangle A B C$ the following relationship holds:

$$
a^{a} \cdot b^{b} \cdot c^{c} \cdot\left(m_{a}+m_{b}+m_{c}\right)^{2 s} \geq(2 s)^{2 s} \cdot m_{a}^{2} \cdot m_{b}^{b} \cdot m_{c}^{c}
$$

Proposed by Daniel Sitaru - Romania
Solution by Tapas Das - India

$$
\begin{gathered}
a^{a} \cdot b^{b} \cdot c^{c} \cdot\left(m_{a}+m_{b}+m_{c}\right)^{2 s} \geq(2 s)^{2 s} \cdot m_{a}^{a} \cdot m_{b}^{b} \cdot m_{c}^{c} \\
\left(\frac{a}{m_{a}}\right)^{a} \cdot\left(\frac{b}{m_{b}}\right)^{b} \cdot\left(\frac{c}{m_{c}}\right)^{c} \geq\left\{\frac{(a+b+c)}{m_{a}+m_{b}+m_{c}}\right\}^{2 s} \\
\left(\frac{a}{m_{a}}\right)^{a} \cdot\left(\frac{b}{m_{b}}\right)^{b} \cdot\left(\frac{c}{m_{c}}\right)^{c} \geq\left(\frac{a+b+c}{m_{a}+m_{b}+m_{c}}\right)^{a+b+c} \\
{\left[\left(\frac{a}{m_{a}}\right)^{a} \cdot\left(\frac{b}{m_{b}}\right)^{b} \cdot\left(\frac{c}{m_{c}}\right)^{c}\right]^{\frac{1}{a+b+c}} \geq \frac{a+b+c}{\frac{a}{\left(\frac{a}{m_{a}}\right)}+\frac{b}{\left(\frac{b}{m_{b}}\right)}+\frac{c}{\left(\frac{c}{m_{c}}\right)}}=\frac{a+b+c}{m_{a}+m_{b}+m_{c}}} \\
\therefore\left(\frac{a}{m_{a}}\right)^{a} \cdot\left(\frac{b}{m_{b}}\right)^{b} \cdot\left(\frac{c}{m_{c}}\right)^{c} \geq\left(\frac{a+b+c}{m_{a}+m_{b}+m_{c}}\right)^{a+b+c} \\
\quad \text { Equality holds for } a=b=c .
\end{gathered}
$$

