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Proposed by George Apostolopoulos-Messolonghi-Greece
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco

Let S be the area of AABC. By CBS inequality, we have
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So it suffices to prove that
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We know that m,, m,, m, can be the sides of a triangle with area S’

3a
= — and medians m; = —,
4 4

3b c
my = T,m’c =1 Then the inequality we have to prove is
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Now, the last inequality will be true if the triangle with side
— lengths a, b, c and area S satisfies
the following inequality :
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By Tereshin’'s inequality, we have
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Using the known inequality, m, > +/s(s — a) (and analogs), we have
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Then
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s2 - 2Rr
which completes the proof. Equality holds iff AABC is equilateral.
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