ROMANIAN MATHEMATICAL MAGAZINE

Solve the differential equation:

$$u_{tt} + u_{xx} = 0$$
 $u(x, 0) = \sec^a x + \csc^b x - 1$ $u_t(x, 0) = 0$

where: b+1=a=tg2z-2 and
$$\frac{2}{tg2x}=sinzcosz(2ctgz-1)$$
, $0 < x < \frac{\pi}{2}$

Proposed by Samir Cabiyev -Azerbaijan

Solution by proposer

Firstly, solve the trigonometric equation: $0 < x < \frac{\pi}{2}$

$$\frac{2}{tg2x} = \frac{2sinxcosxcosx}{sinx} - sinxcosx$$

and accepted that,

$$tg2x = \frac{2tgx}{1 - tg^2x} \quad sinx = cosxtgx \quad cosx = \frac{1}{1 + tg^2x}. Then:$$

$$\frac{1 - tg^2x}{tgx} = \frac{2 - tgx}{1 + tg^2x}$$

$$1 - tg^4x = 2tgx - tg^2x$$

$$tg^4x - tg^2x + 2tgx - 1 = 0$$

$$(tg^2x)^2 - (tgx - 1)^2 = 0$$

$$tg^2x - tgx + 1 = 0$$
 here $D < 0$ but $tg^2x + tgx - 1 = 0$

$$tgx = \frac{\sqrt{5} - 1}{2}$$

According to the formula above: tg2x = 2 . And a = 0 , b = -1

We consider in wave equation:

$$u_{tt} + u_{xx} = 0 \quad u(x,0) = sinx \qquad u_t(x,0) = 0$$

$$u(x,t) = \frac{sin(x-it) + sin(x+it)}{2} = \frac{e^{i(x-it)} - e^{-i(x-it)}}{2i} + \frac{e^{i(x+it)} - e^{-i(x+it)}}{2i} = \frac{e^{ix} - e^{-ix}}{2i} \frac{e^t + e^{-t}}{2} = sinxcht$$