ANIAN MATHEMATICAL MAGAZIN

Let be
$$a_1=a\in\mathbb{R}$$
 , $a\neq 2$, $a_2=rac{a}{a-2}$, and: $a_{n+1}=rac{a_n^2}{a_n^2-2a_n+2}$, $\forall n\geq 2$ Prove that: $\sum_{k=1}^n 2^{k-1}a_k=\prod_{k=1}^n a_k$.

Determine a_n and compute:

 $\lim_{n\to\infty}a_n$

Proposed by Bela Kovacs-Romania

Solution by Khaled Abd Imouti-Syria, Omar Alhafeez-Syria

Let us prove the following issue by mathematical induction:

$$E(n) : \sum_{k=1}^{n} 2^{k-1} a_k = \prod_{k=1}^{n} a_k$$

At $= 1 : a_1 = a_1$, so the issue is valid for n = 1.

$$\begin{array}{c} {\rm At}=2:a_1+2a_2\overset{?}{=}a_1.a_2\\ {\rm Firstly,}\ l_1\coloneqq a_1+2a_2=a_1+\frac{2a_1}{a_1-2}=\frac{a_1^2-2a_1+2a_1}{a_1-2}=\frac{a_1^2}{a_1-2}=a_1.\frac{a_1}{a_1-2}=a_1.a_2\coloneqq l_2\\ {\rm Now,\,we\,assume\,that\,the\,issue\,is\,valid\,at\,n=p} \end{array}$$

$$E(p) : \sum_{k=1}^{p} 2^{k-1} a_k = \prod_{k=1}^{p} a_k$$

$$E(p+1): \sum_{k=1}^{p+1} 2^{k-1} a_k = \prod_{k=1}^{p+1} a_k$$

$$l_1 := \sum_{k=1}^{p+1} 2^{k-1} a_k = \sum_{k=1}^{p} 2^{k-1} a_k + 2^p a_{p+1} = \prod_{k=1}^{p+1} a_k + \frac{2^p a_p^2}{a_p^2 - 2a_p + 2}$$

$$= \frac{a_p^2 \prod_{k=1}^p a_k - 2a_p \prod_{k=1}^p a_k + 2 \prod_{k=1}^p a_k + 2^p a_p^2}{a_p^2 - 2a_p + 2}$$

$$\prod_{k=1}^{p-1} a_k + 2^{p-1} a_p = \sum_{k=1}^{p-1} 2^{k-1} a_k + 2^{p-1} a_p = \sum_{k=1}^{p} 2^{k-1} a_k = \prod_{k=1}^{p} a_k$$

$$\Rightarrow -\prod_{k=1}^{p} a_k + \prod_{k=1}^{p-1} a_k + 2^{p-1} a_p = -\prod_{k=1}^{p} a_k + \prod_{k=1}^{p} a_k = 0$$

$$\Rightarrow -\prod_{k=1}^{p-1} a_k + \prod_{k=1}^{p-1} a_k + 2^{p-1} a_p = 0$$
When within the bath sides by $2^{p-1} a_p = 0$

We multiply both sides by $2a_n$:

$$\Rightarrow -2a_p \prod_{k=1}^p a_k + 2a_p \prod_{k=1}^{p-1} a_k + 2^p a_p^2 = 2a_p(0) = 0$$

IAN MATHEMATICAL MAGAZINE

$$\Rightarrow -2a_{p}\prod_{k=1}^{p}a_{k}+2\prod_{k=1}^{p}a_{k}+2^{p}a_{p}^{2}=0$$
Hence,
$$l_{1}=\frac{a_{p}^{2}\prod_{k=1}^{p}a_{k}-2a_{p}\prod_{k=1}^{p}a_{k}+2\prod_{k=1}^{p}a_{k}+2^{p}a_{p}^{2}}{a_{p}^{2}-2a_{p}+2}=\prod_{k=1}^{p}a_{k}\frac{a_{p}^{2}}{a_{p}^{2}-2a_{p}+2}=$$

$$=a^{p+1}\prod_{k=1}^{p}a_{k}=\prod_{k=1}^{p+1}a_{k}\coloneqq l_{2}$$

So, E(p+1) is valid and the issue is valid for any $n \ge 1$.

Now, let's consider a function
$$f$$
 defined on $\mathbb R$ by :
$$f: x \mapsto f(x) \coloneqq \frac{x^2}{x^2 - 2x + 2}$$
 This function is differentiable on $\mathbb R$ and f

This function is differentiable on $\mathbb R$ and :

$$f'(x) = -\frac{2x(x-2)}{(x^2 - 2x + 2)^2}$$

 $f'(x)=-\frac{2x(x-2)}{(x^2-2x+2)^2}$ So, f is decreasing on $I_1:=]-\infty,0]$ and $0=f(0)\leq f(x)<\lim_{x\to-\infty}f(x)=1$ on I_1 .

On $I_2 := [0,2]$ the function is increasing and $0 = f(0) \le f(x) \le f(2) = 2$ on I_2 . On $I_3\coloneqq [2,+\infty[$ the function is decreasing and $1=\lim_{x\to +\infty}f(x)< f(x)\leq 2$ on I_3

Hence, For all $\in \mathbb{R}$, $0 \le f(x) \le 2$.

Since f([0,2]) = [0,2] and $f(x) \in [0,2]$ for any $x \in \mathbb{R}$ then $(a_n)_{n \ge 1}$ is bounded and $a_n \in [0,2]$ when $n \geq 3$.

$$a_{n+1}-a_n=-rac{a_n(a_n-2)(a_n-1)}{a_n^2-2a_n+2}$$
 , $n\geq 2$

 $a_{n+1}-a_n=-\frac{a_n(a_n-2)(a_n-1)}{a_n^2-2a_n+2}\ ,\qquad n\geq 2$ $if\ a_1=a>2\ \implies\ a_2=\frac{a}{a-2}>1\ \implies\ a_3-a_2>0\ \text{and while}\ 0\leq a_n\leq 2\ ,\ n\geq 3\ \text{then}\ a_3$ stays in the interval [1, 2], hence $a_4 - a_3 > 0$, so a_4 stays in the same interval, hence the same is true for a_5, a_6, \dots . We deduce that $(a_n)_{n \ge 2}$ is increasing.

So,
$$(a_n)_{n\geq 1}$$
 is increasing, then it's convergent to a number such as x

$$x = \frac{x^2}{x^2 - 2x + 2} \iff x(x^2 - 3x + 2) = 0 \iff x(x - 2)(x - 1) = 0$$

Since the sequence is increasing then x=2 and $\lim_{n\to\infty}a_n=2$.

if $a_1=a<2 \implies a_2=rac{a}{a-2}<1 \implies a_3-a_2<0$ and while $0\le a_n\le 2$, $n\ge 3$ then a_3 stays in the interval [0,1[, hence $a_4-a_3<0$, so a_4 stays in the same interval too, hence the same is true for a_5, a_6, \dots . We deduce that $(a_n)_{n \ge 2}$ is decreasing.

So, $(a_n)_{n\geq 1}$ is decreasing, then it's convergent to a number such as x

$$x = \frac{x^2}{x^2 - 2x + 2} \iff x(x^2 - 3x + 2) = 0 \iff x(x - 2)(x - 1) = 0$$

Since the sequence is decreasing then x = 0 and $\lim a_n = 0$.