ROMANIAN MATHEMATICAL MAGAZINE

Find:

$$
\Omega=\lim _{n \rightarrow \infty} \frac{n+2}{2^{n}} \sum_{k=0}^{n} \frac{(-1)^{k} \cdot 2^{n-k}}{k+1} \cdot\binom{n}{k}
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Pham Duc Nam-Vietnam

$$
\begin{gathered}
(-x+2)^{n}=\sum_{k=0}^{n}\binom{n}{k}(-x)^{k} 2^{n-k} \Rightarrow \int(-x+2)^{n} d x=\int \sum_{k=0}^{n}\binom{n}{k}(-x)^{k} 2^{n-k} d x \\
\Leftrightarrow-\frac{(2-x)^{n+1}}{n+1}+C=\sum_{k=0}^{n}\binom{n}{k} \frac{x(-x)^{k}}{k+1} 2^{n-k}, x=0 \Rightarrow-\frac{2^{n+1}}{n+1}+C=0 \Rightarrow C=\frac{2^{n+1}}{n+1} \\
\Rightarrow \sum_{k=0}^{n}\binom{n}{k} \frac{x(-x)^{k}}{k+1} 2^{n-k}=-\frac{(2-x)^{n+1}}{n+1}+\frac{2^{n+1}}{n+1} \\
\text { Let: } x=1 \Rightarrow \sum_{k=0}^{n}\binom{n}{k} \frac{(-1)^{k}}{k+1} 2^{n-k}=-\frac{1}{n+1}+\frac{2^{n+1}}{n+1}=\frac{2^{n-1}-1}{n+1} \\
\Rightarrow \lim _{n \rightarrow \infty} \frac{n+2}{2^{n}} \sum_{k=0}^{n}\binom{n}{k} \frac{(-1)^{k}}{k+1} 2^{n-k}=\lim _{n \rightarrow \infty} \frac{n+2}{2^{n}} \frac{2^{n-1}-1}{n+1}= \\
=\lim _{n \rightarrow \infty} \frac{n+2}{n+1} \cdot \frac{2^{n-1}-1}{2^{n-1}} \cdot \frac{1}{2}=\frac{1}{2}
\end{gathered}
$$

Solution 2 by Hikmat Mammadov-Azerbaijan

$$
\begin{gathered}
\Omega=\lim _{n \rightarrow \infty} \frac{n+2}{2^{n}} \sum_{k=0}^{n} \frac{(-1)^{k} \cdot 2^{n-k}}{k+1} \cdot\binom{n}{k} \\
\therefore(1-x)^{n}=\sum_{k=0}^{n}(-1)^{k} \cdot x^{k} \cdot\binom{n}{k} \\
\Rightarrow \int_{0}^{t} \sum_{k=0}^{n}(-1)^{k} \cdot x^{k} \cdot\binom{n}{k}=\frac{1}{n+1}-\frac{(1-x)^{n+1}}{n+1} \\
\Rightarrow \sum_{k=0}^{n} \frac{(-1)^{k} \cdot x^{k+1}}{k+1}\binom{n}{k}=\frac{1}{n+1} \cdot\left(1-(1-x)^{n+1}\right)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{gathered}
\Rightarrow \frac{n+2}{2^{n}} \sum_{k=0}^{n} \frac{(-1)^{k} \cdot 2^{n-k}}{k+1} \cdot\binom{n}{k}=(n+2) \sum_{k=0}^{n} \frac{(-1)^{k} \cdot\left(\frac{1}{2}\right)^{k}}{k+1} \cdot\binom{n}{k} \\
=2 \cdot(n+2) \sum_{k=0}^{n} \frac{(-1)^{k} \cdot\left(\frac{1}{2}\right)^{k+1}}{k+1} \cdot\binom{n}{k}=2 \cdot(n+2) \cdot \frac{1}{n+1}\left(1-\left(1-\frac{1}{2}\right)^{n+1}\right)=2 \\
\Rightarrow \Omega=2
\end{gathered}
$$

