ROMANIAN MATHEMATICAL MAGAZINE

Find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt[n+1]{(n+1)!}} \cdot \sqrt[5]{\frac{(n+1) H_{n}}{n H_{n+1}}}\right)
$$

Proposed by Daniel Sitaru - Romania

Solution by Adrian Popa - Romania

First, we will calculate:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{n}}{n!}} \frac{c . D .}{=} \lim _{n \rightarrow \infty} \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^{n}}= \\
=\lim _{n \rightarrow \infty} \frac{(n+1)^{n} \cdot(n+1) \cdot n!}{n!(n+1) n^{n}}=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e \Rightarrow \\
\Rightarrow \lim _{n \rightarrow \infty} \sqrt[n+1]{\frac{(n+1)^{n+1}}{(n+1)!}}=e \\
\Omega=\lim _{n \rightarrow \infty} \frac{1}{\sqrt[n+1]{(n+1)!}} \sqrt[5]{\frac{(n+1) H_{n}}{n H_{n+1}}}=\lim _{n \rightarrow \infty} \sqrt[n+1]{\frac{(n+1)^{n+1}}{(n+1)!}} \cdot \frac{1}{n+1} \sqrt[5]{\frac{(n+1) H_{n}}{n H_{n+1}}} \\
=\lim _{n \rightarrow \infty} e^{\sqrt[5]{(n+1) H_{n}}} \sqrt{n H_{n+1}(n+1)^{5}}
\end{gathered} e \cdot \lim _{n \rightarrow \infty} \sqrt[5]{\frac{H_{n}}{H_{n+1} \cdot n(n+1)^{4}}}=0 \quad l 又
$$

