ROMANIAN MATHEMATICAL MAGAZINE

Find:

$$
\Omega=\lim _{n \rightarrow \infty} \log n \cdot\left(\sum_{k=2}^{n} \frac{\log k}{k}\right)^{\frac{1}{n}} \cdot\left(\int_{0}^{n} \frac{|\sin x|}{x}\right)^{-1}
$$

Proposed by Khaled Abd Imouti-Syria

Solution by Hikmat Mammadov-Azerbaijan

Euler - Maclaurin summation gives us

$$
\begin{aligned}
\sum_{k=2}^{n} \frac{\log k}{k} & =\sum_{k=1}^{n} \frac{\log k}{k} \sim \frac{\log ^{2} n}{2} \\
\text { as } n & \rightarrow \infty, \text { so that }
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty}\left(\sum_{k=2}^{n} \frac{\log k}{k}\right)^{\frac{1}{n}}=1
$$

We also have $\int_{1}^{n} \frac{|\sin x|}{x} d x \sim \frac{2}{\pi} \log n$ as $n \rightarrow \infty$ (proved below), and it follows that

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \log n\left(\sum_{k=2}^{n} \frac{\log k}{k}\right)^{\frac{1}{n}}\left(\int_{1}^{n} \frac{|\sin x|}{x} d x\right)^{-1}=\frac{\pi}{2} \\
\text { Let } m=\left\lfloor\frac{n}{\pi}\right\rfloor \text { so that } m \pi \leq n<m \pi+\pi . \text { We have } \\
\int_{1}^{n} \frac{|\sin x|}{x} d x=\int_{1}^{\pi} \frac{|\sin x|}{x} d x+\sum_{k=2}^{m} \int_{(k-1) \pi}^{k \pi} \frac{|\sin x|}{x} d x+\int_{m \pi}^{n} \frac{|\sin x|}{x} d x \tag{1}
\end{gather*}
$$

Using $\int_{j \pi}^{j \pi+\pi}|\sin x| d x=2$, we can find the following upper and lower bounds for the terms on the RHS of (1):

$$
\begin{gather*}
0 \leq \int_{1}^{\pi} \frac{|\sin x|}{x} d x \leq \log \pi, \frac{2}{\pi} \sum_{k=2}^{m} \frac{1}{k} \leq \sum_{k=2}^{m} \int_{(k-1) \pi}^{k \pi} \frac{|\sin x|}{x} d x \leq \frac{2}{\pi} \sum_{k=2}^{m} \frac{1}{k-1} \tag{2}\\
0 \leq \int_{m \pi}^{n} \frac{|\sin x|}{x} d x \leq \int_{m \pi}^{m \pi+\pi} d x \leq \frac{2}{m \pi+\pi}
\end{gather*}
$$

Dividing both sides of (1) by $\log n$ and applying the bounds in (2), we get

$$
\frac{2}{\pi \log n} \sum_{k=2}^{m} \frac{1}{k} \leq \frac{1}{\log n} \int_{1}^{n} \frac{|\sin x|}{x} d x \leq \frac{\log \pi}{\log n}+\frac{2}{\pi \log n} \sum_{k=1}^{m-1} \frac{1}{k}+\frac{2}{(m \pi+\pi) \log n}
$$

ROMANIAN MATHEMATICAL MAGAZINE

Taking the limit as $n \rightarrow \infty$, the first and third terms on the RHS of (3) tend to 0 . We also have the following asymptotic behavior for the harmonic sums, where γ is the Euler-

Mascheroni constant,
$\sum_{k=2}^{m} \frac{1}{k} \sim \gamma+\log m \leq \gamma+\log \frac{n}{\pi} \sim \log n, \sum_{k=1}^{m-1} \frac{1}{k} \sim \gamma+\log (m-1) \leq \gamma+\log \left(\frac{n}{\pi}-1\right)$
$\sim \log n$
and it follows from the squeeze theorem applied to (3) that

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \int_{1}^{n} \frac{|\sin x|}{x} d x=\frac{2}{\pi}
$$

