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Euler – Maclaurin summation gives us  
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terms on the RHS of (1): 
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Dividing both sides of (1) by 𝐥𝐨𝐠 𝒏 and applying the bounds in (2), we get 
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Taking the limit as 𝒏 → ∞, the first and third terms on the RHS of (3) tend to 0. We also 

have the following asymptotic behavior for the harmonic sums, where 𝜸 is the Euler-

Mascheroni constant, 
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