ROMANIAN MATHEMATICAL MAGALZINE
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Euler — Maclaurin summation gives us

We also have fln lSi:xl dx ~ %logn as n — oo (proved below), and it follows that
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Letm = H so that mm < n < mm + . We have
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Using f]]: "Isin x| dx = 2, we can find the following upper and lower bounds for the

terms on the RHS of (1):
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Dividing both sides of (1) by log n and applying the bounds in (2), we get
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Taking the limit as n — oo, the first and third terms on the RHS of (3) tend to 0. We also
have the following asymptotic behavior for the harmonic sums, where y is the Euler-

Mascheroni constant,
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and it follows from the squeeze theorem applied to (3) that
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