IONESCU - WEITZENBÖCK'S TYPE INEQUALITIES WITH FIBONACCI NUMBERS

D.M. BĂTINEŢU - GIURGIU, MIHÁLY BENCZE, CLAUDIA NĂNUŢI, NECULAI STANCIU

Abstract. In this paper we present some inequalities with Fibonacci numbers related to Ionescu - Weitzenböck's inequality

Let m positive real number and n be positive integer number. If $A B C$, is a triangle with area S and usual notations then we have that:
(1) $\frac{a^{2(m+1)}}{\left(F_{n} m_{a}^{2}+F_{n+1} m_{b}^{2}\right)^{m}}+\frac{b^{2(m+1)}}{\left(F_{n} m_{b}^{2}+F_{n+1} m_{c}^{2}\right)}+\frac{c^{2(m+1)}}{\left(F_{n} m_{c}^{2}+F_{n+1} m_{a}^{2}\right)} \geq \frac{4^{m+1} \sqrt{3}}{3^{m} F_{n+2}^{m}} S$

$$
\begin{equation*}
\frac{a^{2(m+1)}}{\left(F_{n} m_{a}^{2}+F_{n+1} m_{b}^{2}+F_{n+2} m_{c}^{2}\right)^{m}}+\frac{b^{2(m+1)}}{\left(F_{n} m_{b}^{2}+F_{n+1} m_{c}^{2}+F_{n+2} m_{a}^{2}\right)}+ \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{m_{a}^{2(m+1)}}{\left(F_{n} b^{2}+F_{n+1} c^{2}\right)^{m}}+\frac{m_{b}^{2(m+1)}}{\left(F_{n} c^{2}+F_{n+1} a^{2}\right)}+\frac{m_{c}^{2(m+1)}}{\left(F_{n} a^{2}+F_{n+1} b^{2}\right)} \geq \frac{3^{m+1} \sqrt{3}}{4^{m} F_{n+2}^{m}} S \tag{2}
\end{equation*}
$$

$$
+\frac{c^{2(m+1)}}{\left(F_{n} m_{c}^{2}+F_{n+1} m_{a}^{2}+F_{n+2} m_{b}^{2}\right)} \geq \frac{2^{m+2} \sqrt{3}}{3^{m} F_{n+2}^{m}} S
$$

$$
\begin{gather*}
\frac{m_{a}^{2(m+1)}}{\left(F_{n} a^{2}+F_{n+1} b^{2}+F_{n+2} c^{2}\right)^{m}}+\frac{m_{b}^{2(m+1)}}{\left(F_{n} b^{2}+F_{n+1} c^{2}+F_{n+2} a^{2}\right)}+ \tag{4}\\
+\frac{m_{c}^{2(m+1)}}{\left(F_{n} c^{2}+F_{n+1} a^{2}+F_{n+2} b^{2}\right)} \geq \frac{3^{m+1} \sqrt{3}}{8^{m} F_{n+2}^{m}} S
\end{gather*}
$$

Proof.
We use Radon's inequality, the well-known formula

$$
m_{a}^{2}+m_{b}^{2}+m_{c}^{2}=\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right)
$$

and Ionescu-Weitzenböck's inequality, i.e.

$$
a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} S
$$

Proof of (1).
We have:

$$
W_{n}=\sum \frac{a^{2(m+1)}}{\left(F_{n} m_{a}^{2}+F_{n+1} m_{b}^{2}\right)^{m}}=\sum \frac{\left(a^{2}\right)^{m+1}}{\left(F_{n} m_{a}^{2}+F_{n+1} m_{b}^{2}\right)^{m}}
$$

and by J. Radon's inequality we deduce that:

$$
W_{n} \geq \frac{\left(a^{2}+b^{2}+c^{2}\right)^{m+1}}{\left(\sum\left(F_{n} m_{a}^{2}+F_{n+1} m_{b}^{2}\right)\right)^{m}}=\frac{\left(a^{2}+b^{2}+c^{2}\right)^{m+1}}{\left(F_{n}+F_{n+1}\right)^{m}\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)^{m}}=
$$

$$
=\frac{\left(a^{2}+b^{2}+c^{2}\right)^{m+1}}{F_{n+2}^{m}\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)^{m}}
$$

But, $m_{a}^{2}+m_{b}^{2}+m_{c}^{2}=\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right)$, so: $W_{n} \geq \frac{4^{m}}{3^{m} F_{n+2}^{m}}\left(a^{2}+b^{2}+c^{2}\right)$.
By Ionescu - Weitzenböck's inequality, i.e. $a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} S$, we deduce that:

$$
W_{n} \geq \frac{4^{m+1} \sqrt{3}}{3^{m} F_{n+2}^{m}} S, \text { so (1) is proved. }
$$

Proof of (2).
We have:

$$
Y_{n}=\sum \frac{m_{a}^{2(m+1)}}{\left(F_{n} b^{2}+F_{n+1} c^{2}\right)^{m}}=\sum \frac{\left(m_{a}^{2}\right)^{m+1}}{\left(F_{n} b^{2}+F_{n+1} c^{2}\right)^{m}},
$$

and by J. Radon's inequality we deduce that:

$$
\begin{gathered}
Y_{n} \geq \frac{\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)^{m+1}}{\left(\sum\left(F_{n} b^{2}+F_{n+1} c^{2}\right)\right)^{m}}=\frac{\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)^{m+1}}{\left(F_{n}+F_{n+1}\right)^{m}\left(a^{2}+b^{2}+c^{2}\right)^{m}}= \\
=\frac{\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)^{m+1}}{F_{n+2}^{m}\left(a^{2}+b^{2}+c^{2}\right)^{m}} .
\end{gathered}
$$

Since, $m_{a}^{2}+m_{b}^{2}+m_{c}^{2}=\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right)$, we have:

$$
Y_{n} \geq \frac{3^{m+1}}{4^{m+1} F_{n+2}^{m}}\left(a^{2}+b^{2}+c^{2}\right)
$$

By Ionescu - Weitzenböck's inequality, i.e. $a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} S$, we deduce that:

$$
Y_{n} \geq \frac{3^{m+1} \sqrt{3}}{4^{m} F_{n+2}^{m}} S, \text { so (2) is proved. }
$$

Proof of (3).
We have:

$$
Z_{n}=\sum \frac{a^{2(m+1)}}{\left(F_{n} m_{a}^{2}+F_{n+1} m_{b}^{2}+F_{n+2} m_{c}^{2}\right)^{m}}=\sum \frac{\left(a^{2}\right)^{m+1}}{\left(F_{n} m_{a}^{2}+F_{n+1} m_{b}^{2}+F_{n+2} m_{c}^{2}\right)^{m}},
$$

and by J. Radon's inequality we deduce that:

$$
\begin{gathered}
Z_{n} \geq \frac{\left(a^{2}+b^{2}+c^{2}\right)^{m+1}}{\left(\sum\left(F_{n} m_{a}^{2}+F_{n+1} m_{b}^{2}+F_{n+2} m_{c}^{2}\right)\right)^{m}}=\frac{\left(a^{2}+b^{2}+c^{2}\right)^{m+1}}{\left(F_{n}+F_{n+1}+F_{n+2}\right)^{m}\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)^{m}}= \\
=\frac{\left(a^{2}+b^{2}+c^{2}\right)^{m+1}}{2^{m} F_{n+2}^{m}\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)^{m}} .
\end{gathered}
$$

Since, $m_{a}^{2}+m_{b}^{2}+m_{c}^{2}=\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right)$, we have:

$$
Z_{n} \geq \frac{2^{m}}{3^{m} F_{n+2}^{m}}\left(a^{2}+b^{2}+c^{2}\right) .
$$

By Ionescu - Weitzenböck's inequality, i.e. $a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} S$, we deduce that:

$$
Z_{n} \geq \frac{2^{m+2} \sqrt{3}}{3^{m} F_{n+2}^{m}} S, \text { so (3) is proved. }
$$

Proof of (4).
We have:

$$
X_{n}=\sum \frac{m_{a}^{2(m+1)}}{\left(F_{n} a^{2}+F_{n+1} b^{2}+F_{n+2} c^{2}\right)^{m}}=\sum \frac{\left(m_{a}^{2}\right)^{m+1}}{\left(F_{n} a^{2}+F_{n+1} b^{2}+F_{n+2} c^{2}\right)^{m}},
$$

and by J. Radon's inequality we deduce that:

$$
\begin{gathered}
X_{n} \geq \frac{\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)^{m+1}}{\left(\sum\left(F_{n} a^{2}+F_{n+1} b^{2}+F_{n+2} c^{2}\right)\right)^{m}}=\frac{\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)^{m+1}}{\left(F_{n}+F_{n+1}+F_{n+2}\right)^{m}\left(a^{2}+b^{2}+c^{2}\right)^{m}}= \\
=\frac{\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)^{m+1}}{2^{m} F_{n+2}^{m}\left(a^{2}+b^{2}+c^{2}\right)^{m}} .
\end{gathered}
$$

We know that: $m_{a}^{2}+m_{b}^{2}+m_{c}^{2}=\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right)$, so:

$$
X_{n} \geq \frac{3^{m+1}}{2^{3 m+2} F_{n+2}^{m}}\left(a^{2}+b^{2}+c^{2}\right)
$$

By Ionescu - Weitzenböck's inequality, i.e. $a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} S$, we obtain that:

$$
X_{n} \geq \frac{3^{m+1} \sqrt{3}}{2^{3 m} F_{n+2}^{m}} S, \text { and the proof is complete. }
$$

References

[1] Romanian Mathematical Magazine - Interactive Journal, www.ssmrmh.ro
Mathematics Department, National Economic College "Theodor Costescu", Drobeta Turnu - Severin, Romania

Email address: dansitaru63@yahoo.com

