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Abstract

During this quest, we define the Riemann integrals using the Darboux upper and

lower integrals. The ideas here are very similar to integration in one dimension. The

complication is mostly notational.

The differences between one and several dimensions will grow more pronounced as we

proceed.

The so-called Riemann sums have their origin in the efforts of Greek mathematicians

to find the center of gravity or the volume of a solid body. These researches led to the

method of exhaustion, discovered by Archimedes and described using modern ideas by

MacLaurin in his Treatise of Fluxions in 1742. At this times the sums were only a

practical method for computing an area under a curve, and the existence of this area

was considered geometrically obvious. The method of exhaustion consists in almost

covering the space enclosed by the curve with n geometric objects with well-known

areas such as rectangles or triangles, and finding the limit (though this topic was very

blurry at these early times) when n increases. One of its most remarkable application

is squaring the area A enclosed by a parabola and a line. Nowadays, Riemann sums

remain a useful tool to study some sequences involving sums. 1

1Bernhard Riemann : The greatest strategy is doomed if it’s implemented badly.
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Preliminaries

1 The Riemann Integral in R

1.1 Definition.

Let [a, b] be a given closed and bounded interval in R. A partition P of [a, b] is a finite set

of points P = {x0, x1, x2, . . . , xn} such that

a = x0 < x1 < x2 < · · · < xn = b

1.2 Remark.

1. There is no requirement that the partition points xi be equally spaced. Partitions in

which the partition points are equally spaced are called standard partitions.

2. For each i = 1, 2, 3, . . . , n. Set

∆xi = xi − xi−1

which is equal to the length of the subinterval [xi−1, xi].

3. The number ∥P∥ = max1≤i≤n ∆xi is called the norm of P (or the mesh of P).

4. Suppose that f is a bounded function on [a, b], we write

Mi(f) = sup{f(x) : x ∈ [xi−1, xi]}

mi(f) = inf{f(x) : x ∈ [xi−1, xi]}

1.3 Definition.

Let f be a bounded function on [a, b] and P = {x0, x1, x2, . . . , xn} a partition of [a, b]. The

upper Riemann sum for f and the partition P is defined by

U(f,P) =
n∑

i=1

Mi(f)∆xi

Similarly, the lower Riemann sum for f and the partition P is defined by

L(f,P) =
n∑

i=1

mi(f)∆xi

Remark.

1. Since mi(f) ≤ Mi(f) for all i = 1, 2, 3, . . . , n, we always have

L(f,P) ≤ U(f,P).
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for any partition P of [a, b]

2. For a non-negative continuous function, the upper Riemann sum U(f,P) represents

the circumscribed rectangular approximation to the area under the graph f . Similarly,

the lower Riemann sum represents the inscribed rectangular approximation of the area

under the graph of f .

x0 x∗
0 x1 x∗

1 x2 x∗
2 x3 x∗

3 x4

Figure 1: Riemann sum.

x0 x1 x2 x3 x4

Figure 2: Upper and lower Darboux sums.

Lemma 1.1. Let f be a bounded function on [a, b]. If m ≤ f(x) ≤ M for all x ∈ [a, b], then

m(b− a) ≤ L(f,P) ≤ U(f,P) ≤ M(b− a)

for any partition P of [a, b]

Proof. Let P = {x0, x1, x2, . . . , xn} be any partition of [a, b]. Since Mi(f) ≤ M for all

i = 1, 2, 3, . . . , n, we have

U(f,P) =
n∑

i=1

Mi(f)∆xi ≤
n∑

i=1

M(xi − xi−1) = M(b− a)

Similarly, since mi(f) ≥ m for all i = 1, 2, 3, . . . , n, we have

L(f,P) =
n∑

i=1

mi(f)∆xi ≥
n∑

i=1

m(xi − xi−1) = m(b− a)

Hence,

m(b− a) ≤ L(f,P) ≤ U(f,P) ≤ M(b− a)

for any partition P of [a, b]

Definition

A partition P ′ of [a, b] is called a refinement of P if P ⊂ P ′.

Lemma 1.2. Let f be bounded on [a, b] and let P ′ be a refinement of a partition P of [a, b].

Then

L(f,P) ≤ L(f,P ′) ≤ U(f,P ′) ≤ U(f,P)
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Proof. Let P = {x0, x1, x2, . . . , xn}. Suppose that P ′ = P ∪ {x′}. Furthermore, we can,

without the loss of generality, assume that x0 < x′ < x1, so that P ′ = {x0, x
′, x1, x2, . . . , xn}.

Now, let

M ′
1(f) = sup{f(x) : x ∈ [x0, x

′]}

M ′′
1 (f) = sup{f(x) : x ∈ [x′, x1]}

Since f(x) ≤ M1(f) for all x ∈ [x0, x1], we have that f(x) ≤ M1(f) for all x ∈ [x0, x
′] and

also for all x ∈ [x′, x1]. Therefore,

M ′
1(f) ≤ M1(f) and M ′′

1 (f) ≤ M1(f)

Hence,

M ′
1(f)(x

′ − x0) +M ′′
1 (f)(x1 − x′) ≤ M1(f)(x

′ − x0) +M1(f)(x1 − x′) = M1(f)(x1 − x0)

Now,

U(f,P ′) = M ′
1(f)(x

′ − x0) +M ′′
1 (f)(x1 − x′) +

n∑
i=2

Mi(f)∆xi ≤ M1(f)(x1 − x0) +
n∑

i=2

Mi(f)∆xi

=
n∑

i=1

Mi(f)∆xi = U(f,P).

Showing that U(f,P ′) ≤ U(f,P).

If P ′ contains more than one additional point, we repeat the above argument the appropriate

number of times. That L(f,P) ≤ L(f,P ′) is proved in a similar way.

Definition

Let f be a bounded real-valued function on a closed and bounded interval [a, b]. The upper

and lower Riemann integrals of f , denoted by

∫ b

a

f(x) dx and

∫ b

a

f(x) dx

respectively are defined by

∫ b

a

f(x) dx = inf{U(f,P) : P ∈ P[a, b]}

∫ b

a

f(x) dx = sup{L(f,P) : P ∈ P[a, b]}
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Theorem 1.3. Let f be a bounded real-valued function on [a, b]. Then

∫ b

a

f(x) dx ≤
∫ b

a

f(x) dx

Proof. Let P1 and P2 be any two partitions of [a, b]. Then from Lemma 1.2

L(f, P1) ≤ L(f, P1 ∪ P2) ≤ U(f, P1 ∪ P2) ≤ U(f, P2)

Thus,

L(f, P1) ≤ U(f, P2)

for any two partitions P1 and P2. Hence,∫ b

a

f(x) dx = sup
P1

L(f, P1) ≤ U(f, P2).

That is ∫ b

a

f(x) dx = U(f, P2).

Taking the infimum over P2, we obtain

∫ b

a

f(x) dx ≤ inf
P2

U(f, P2) =

∫ b

a

f(x) dx.

Hence, the result.

Definition

Let f be a bounded real-valued function on a closed and bounded interval [a, b]. f is called

Riemann-Integrable on [a, b] if

∫ b

a

f(x) dx =

∫ b

a

f(x) dx.

The common value is denoted by, ∫ b

a

f(x) dx

and is called the Riemann integral of f on [a, b].

We denote by R[a, b] the set of all Riemann-integrable functions on [a, b].
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1.4 Remark.

If f : [a, b] −→ R satisfies m ≤ f(x) ≤ M for all x ∈ [a, b], then by Lemma 1.1,

m(b− a) ≤
∫ b

a

f(x) dx ≤
∫ b

a

f(x) dx ≤ M(b− a).

If in addition f ∈ R[a, b], then

m(b− a) ≤
∫ b

a

f(x) dx ≤ M(b− a).

In particular, if f(x) ≥ 0 for all x ∈ [a, b], then

∫ b

a

f(x) dx ≥ 0. If f ∈ R[a, b] is non-negative,

then the quantity

∫ b

a

f(x) dx ≥ 0 represents the area of the region bounded above by the

graph y = f(x), below by the x− axis and by the lines x = a and x = b.

2 Riemann Integral Over Rectangles

2.1 Rectangles and Partitions

Definition.

Let (ξ1, ξ2, . . . , ξn) and (η1, η2, . . . , ηn) be such that ξk ≤ ηk for all k. A set of the form

[ξ1, η1] × [ξ2, η2] × · · · × [ξn, ηn] is called a closed rectangle. In this setting it is sometimes

useful to allow ξk = ηk, in which case we think of [ξk, ηk] = {ξk} as usual. If ξk < ηk for all

k, then a set of the form (ξ1, η1)× (ξ2, η2)× · · · × (ξn, ηn) is called an open rectangle.

For any closed or open rectangle R := [ξ1, η1]× [ξ2, η2]× · · · × [ξn, ηn] ⊂ Rn or

R := (ξ1, η1)× (ξ2, η2)× · · · × (ξn, ηn) ⊂ Rn, we define the n-dimensional volume by

V (R) := (η1 − ξ1)(η2 − ξ2) · · · (ηn − ξn) =
n∏

i=1

(ηi − ξi) (1)

A partition P of the closed rectangle R = [ξ1, η1] × [ξ2, η2] × · · · × [ξn, ηn] is a finite

set of partitions P1, P2, . . . , Pn of the intervals [ξ1, η1], [ξ2, η2], . . . , [ξn, ηn]. We will write

P = (P1, P2, . . . , Pn). That is, for every k there is an integer ℓk and the finite set of numbers

Pk = {xk,0, xk,1, xk,2, . . . , xk,ℓk} such that

ξk = xk,0 < xk,2 < · · · < xk,ℓk−1
< xk,ℓk = ηk

Picking a set of n integers j1, j2, . . . , jn where jk ∈ {1, 2, 3, . . . , ℓk} wee get the sub-rectangle

[x1,j1−1, x1,j1 ]× [x2,j2−1, x2,j2 ]× · · · × [xn,jn−1, xn,jn ]
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For simplicity, we order the sub-rectangles somehow and we say {R1, R2, R3, . . . , RN} are

the sub-rectangles corresponding to the partition P of R. It is not difficult to see that these

sub-rectangles cover our original R, and their volume sums to that of R. That is

R =
N⋃
j=1

Rj, and V (R) =
N∑
j=1

V (Rj) (2)

When

Rk = [x1,j1−1, x1,j1 ]× [x2,j2−1, x2,j2 ]× · · · × [xn,jn−1, xn,jn ]

then

V (Rk) = ∆x1,j1∆x2,j2 · · ·∆xn,jn =
n∏

i=1

∆xi,ji =
n∏

i=1

(xi,ji − xi,ji−1).

Let R ⊂ Rn be a closed rectangle and let f : R −→ R be a bounded function, Let P be

partition of [a, b] and suppose that there are N sub-rectangles. Let Ri be a sub-rectangle of

P . Define

mi := inf{f(x) : x ∈ Ri},

Mi := sup{f(x) : x ∈ Ri},

L(P, f) :=
N∑
i=1

miV (Ri),

U(P, f) :=
N∑
i=1

MiV (Ri).

We call L(P, f) the lower Darboux sum and U(P, f) the upper Darboux sum.

The indexing in the definition may be complicated, fortunately we generally do not need

to go back directly to the definition often. We start proving facts about the Darboux sums

analogous to the one-variable results.

Proposition 1. Suppose R ⊂ Rn is a closed rectangle and f : R −→ R is a bounded function.

Let m,M ∈ R be such that for all ξ ∈ R we have m ≤ f(ξ) ≤ M . For any partition P of R

we have

mV (R) ≤ L(P, f) ≤ U(P, f) ≤ MV (R).

Proof. Let P be a partition. Then note that m ≤ mi for all i. Also m ≤ Mi for all i. finally∑N
i=1 V (Ri) = V (R).

Therefore,
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mV (R) = m

(
N∑
i=1

V (Ri)

)
=

N∑
i=1

mV (Ri) ≤
N∑
i=1

miV (Ri) ≤
N∑
i=1

MiV (Ri) ≤
N∑
i=1

MV (Ri)

= M

(
N∑
i=1

V (Ri)

)
= MV (R)

3 Upper and Lower Integrals

By proposition 1 the set of upper and lower Darboux sums are bounded sets and we can

take their infima and suprema. As before, we now make the following definition.

Definition 1. If f : R −→ R is a bounded function an a closed rectangle R ⊂ Rn. Define∫
R

f := sup{L(P, f) : P a partition of R},
∫
R

f := inf{U(P, f) : P a partition of R},

We call

∫
the lower Darboux integral and

∫
the upper Darboux integral.

As in one dimension we have refinements of partitions.

Definition 2. Let R ⊂ Rn be a closed rectangle and let P = (P1, P2, . . . , Pn) and P̃ =

(P̃1, P̃2, . . . , P̃n) be partitions of R. We say P̃ a refinement of P if as sets Pk ⊂ P̃k for all

k = 1, 2, . . . , n.

It is not difficult to see that if P̃ is a refinement of P, then sub-rectangles of P are unions

of sub-rectangles of P̃ . Simply put, in a refinement we took the sub-rectangles of P and we

cut them into smaller sub-rectangles.

Proposition 2. Suppose R ⊂ Rn is a closed rectangle, P is a partition of R and P̃ is a

refinement of P . If f : R −→ R be a bounded function, then

L(P.f) ≤ L(P̃ , f) and U(P̃ , f) ≤ U(P, f)

Proof. Let R1, R2, R3, . . . , RN be the sub-rectangles of P and R̃1, R̃2, . . . , R̃M be the sub-

rectangles of R̃. Let Ik be the set of indices j such that R̃j ⊂ Rk. We notice that

Rk =
⋃
j∈Ik

R̃j, V (Rk) =
∑
j∈Ik

V (R̃j).

Let mj := inf{f(ξ) : ξ ∈ Rj}, and m̃j := inf{f(ξ) : ξ ∈ R̃j} as usual. Notice also that if
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j ∈ Ik, then mk ≤ m̃j. Then

L(P, f) =
N∑
k=1

mkV (Rk) =
N∑
k=1

∑
j∈Ik

mkV (R̃j) ≤
N∑
k=1

∑
j∈Ik

m̃jV (R̃j) = L(P̃ , f).

The key point of this next proposition is that the lower Darboux integral is less than or

equal to the upper Darboux integral.

Proposition 3. Let R ⊂ Rn be a closed rectangle and f : R −→ R a bounded function. Let

m,M ∈ R be such that for all ξ ∈ R we have m ≤ f(ξ) ≤ M . Then

mV (R) ≤
∫
R

f ≤
∫
R

f ≤ MV (R) (3)

Proof. Let P be a partition, via proposition 1

mV (R) ≤ L(P, f) ≤ U(P, f) ≤ MV (R).

By taking suprema of L(P, f) and infima of U(P, f) over all P we obtain the first and the

last inequality. Now, let P = (P1, P2, . . . , Pn) and Q = (Q1, Q2, . . . , Qn) be partitions of R.

Define P̃ = (P̃1.P̃2, . . . , P̃n) by letting P̃k = Pk ∪ Qk. Then P̃ is a partition of R as can

easily be checked, and P̃ is a refinement of P and a refinement of Q. By proposition 2,

L(P, f) ≤ L(P̃ , f) and U(P̃ , f) ≤ U(Q, f). Therefore,

L(P, f) ≤ L(P̃ , f) ≤ U(P̃ , f) ≤ U(Q, f).

It follows directly that,

sup{L(P, f) : P a partition of R} ≤ inf{U(P, f) : P a partition of R}.

In other words,

mV (R) ≤
∫
R

f ≤
∫
R

f ≤ MV (R)

4 The Riemann Integral in Rn

We now have all we need to define the Riemann integral in n-dimensions over rectangles.

Again, the Riemann integral is only defined on a certain class of functions, called the Riemann

integrable functions.

Definition 3. Let R ⊂ Rn be a closed rectangle. Let f : R −→ R be a bounded function
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such that ∫
R

f(x) dx =

∫
R

f(x) dx.

Then f is said to be Riemann integrable. The set of Riemann integrable functions on R is

denoted by R(R). When f ∈ R(R) we define the Riemann integral∫
R

f :=

∫
R

f =

∫
R

f.

When the variable ξ ∈ Rn needs to be emphasized we write∫
R

f(ξ) dξ,

∫
R

f(x1, x2, x3, . . . , xn) dx1 · · · dxn, or

∫
R

f(ξ) dV.

If R ⊂ R2, then often instead of volume we say area, and hence write∫
R

f(ξ) dA.

Remark 1. Let f : R −→ R be a Riemann integrable function on a closed rectangle R ⊂ Rn.

Let m,M ∈ R be such that m ≤ f(ξ) ≤ M for all ξ ∈ R. Then

mV (R) ≤
∫
R

f ≤ MV (R).

For a example a constant function is Riemann integrable. Suppose f(ξ) = k for all ξ ∈ R.

Then

kV (R) ≤
∫
R

f ≤
∫
R

f ≤ kV (R).

So f is integrable, and futhermore ∫
R

f = cV (R).

Remark 2. (Linearity). Let R ⊂ Rn be a closed rectangle and let f and g be in R(R) and

α ∈ R.

1. αf is in R(R) and ∫
R

αf = α

∫
R

f

2. f + g is in R(R) and ∫
R

(f + g) =

∫
R

f +

∫
R

g.

Remark 3. (Monotonicity). Let R ⊂ Rn be a closed rectangle and let f and g be in R(R)
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and let f(ξ) ≤ g(ξ) for all ξ ∈ R. Then∫
R

f ≤
∫
R

f |R.

The proofs of linearity and monotonicity are almost completely identical as the proofs

from one variable. We therefore omit the proofs.

Proposition 4. For a closed rectangle S ⊂ Rn, if f : S −→ R is integrable and R ⊂ S is a

closed rectangle, then f is integrable over R.

Proof. Given ε > 0, we find a partition P such that U(P, f) − L(P, f) < ε. By making a

refinement of P we can assume that the endpoints of R are in P , or in other words, R is a

union of sub-rectangles of P . Then the sub-rectangles of P divide into two collections, ones

that are subsets of R and ones whose intersection with the interior of R is empty. Suppose

that R1, R2, . . . , RK be the sub-rectangles that are subsets of R and RK+1, . . . , RN be the

rest. Let P̃ be the partition of R composed of those sub-rectangles of P contained in R.

Then using the same notation as before.

ε > U(P, f)− L(P, f) =
K∑
k=1

(Mk −mk)V (Rk) +
N∑

k=K+1

(Mk −mk)V (Rk)

≥
K∑
k=1

(Mk −mk)V (Rk) = U(P̃ , f |R)− L(P̃ , f |R)

Therefore f |R is integrable.

5 Integrals of Continuous functions

Later we will prove a much more general result, but it is useful to start with continuous

functions only and prove that continuous functions are integrable. Before we get to contin-

uous functions, let us state the following proposition, which has a very easy proof, but it is

useful to emphasize as a technique.

Lemma 5.1. Let R ⊂ Rn be a closed rectangle and f : R −→ R a bounded function. If for

every ε > 0, there exists a partition P of R such that

U(P, f)− L(P, f) < ε,

then f ∈ R(R).

Proof. Given an ε > 0 find P as in the hypothesis. Then∫
R

f −
∫
R

f ≤ U(P, f)− L(P, f) < ε.
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As

∫
R

f ≥
∫
R

f and the above holds for every ε > 0, we conclude

∫
R

f =

∫
R

f and f ∈

R(R).

We say a rectangle R = [ξ1, η1] × [ξ2, η2] × · · · × [ξn, ηn] has longest side at most α if

ηk − ξk ≥ α for all k = 1, 2, . . . , n.

Lemma 5.2. If a rectangle R ⊂ Rn has longest side at most α. Then for any ξ, η ∈ R,

∥ξ − η∥ ≤
√
nα.

Proof.

∥ξ − η∥ =
√
(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2 ≤

√
(η1 − ξ1)2 + (η2 − ξ2)2 + · · ·+ (ηn − ξn)2

≤
√
α2 + α2 + · · ·+ α2 =

√
nα.

Theorem 5.3. Let R ⊂ Rn be a closed rectangle and f : R −→ R a continuous function,

then f ∈ R(R).

Proof. The proof is analogous to the one variable proof with some complications. The set

R is closed and bounded and hence compact. So f is not just continuous, but in fact uni-

formly continuous. Let ε > 0 be given. Find a δ > 0 such that ∥ξ − η∥ < δ implies

|f(ξ)− f(η)| < ε
V (R)

.

Let P be a partition of R such that the longest side of any sub-rectangle is strictly less

than δ√
n
. Then for all ξ, η ∈ Rk for a sub-rectangle Rk of P we have, by the proposition

above, ∥ξ − η∥ <
√
n δ√

n
= δ.

Therefore,

f(ξ)− f(η) ≤ |f(ξ)− f(η)| < ε

V (R)
.

As f is continuous on Rk, it attains a maximum and a minimum on this interval. Let ξ be a

point where f attains the maximum and η be a point where f attains the minimum. Then

f(ξ) = Mk and f(η) = mk in the notation from the definition of the integral. Therefore,

Mi −mi = f(ξ)− f(η) <
ε

V (R)
.

And so

U(P, f)−L(P, f) =
N∑
k=1

MkV (Rk)−
N∑
k=1

mkV (Rk) =
N∑
k=1

(Mk−mk)V (Rk) <
ε

V (R)

N∑
k=1

V (Rk) = ε.
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As ε > 0 was arbitrary, ∫ b

a

f =

∫ b

a

f,

and f is Riemann integrable on R.

6 Integration of functions with Compact Support

Let U ⊂ Rn be an open set and f : U −→ R be a function. We say the support of f is the

set

supp(f) := {x ∈ U : f(x) ̸= 0}.

That is, the support is the closure of the set of points where the function is non-zero. The

closure is in U , that is in particular supp(f) ⊂ U . So for a point x ∈ U not in the support

we have that f is constantly zero in a whole neighborhood of x.

A function f is said to have compact support if supp(f) is a compact set. We will mostly

consider the case when U = Rn.

Lemma 6.1. Suppose f : Rn −→ R be a function with compact support. If R is a closed

rectangle such that supp(f) ⊂ Ro where Ro is the interior of R, and f is integrable over R

then for any other closed rectangle S with supp(f) ⊂ So, the function f is integrable over S

and ∫
S

f =

∫
R

f

Proof. The intersection of closed rectangles is again a closed rectangle (or empty). Therefore

we can take R̃ = R ∩ S be the intersection of all rectangles containing supp(f). If R is the

empty set, then supp(f) is the empty set and f is identically zero and the lemma becomes

trivial. So suppose that R̃ is non-empty. As R̃ ⊂ R, we know that f is integrable over R̃.

Furthermore R̃ ⊂ S. Given ε > 0, take P̃ to be a partition of R̃ such that

U(P̃ , f |R̃)− L(P̃ , f |R̃) < ε.

Now add the endpoints of S to P̃ to create a new partition P . Note that the sub-rectangles

of P̃ are sub-rectangles of P as well. Let R1, R2, . . . , Rk be the sub-rectangles of P̃ and

RK+1, . . . , RN the sub-rectangles. Note that since supp(f) ⊂ R̃, then for k = K + 1, . . . , N

we have supp(f) ∩ Rk = ∅. In other words f is identically zero on Rk. Therefore in the

notation used previously we have

U(P, f |S)− L(P, f |S)) =
K∑
k=1

(Mk −mk)V (Rk) +
N∑

k=K+1

(Mk −mk)V (Rk) =
K∑
k=1

(Mk −mk)V (Rk)

= U(P̃ , f |R̃)− L(P̃ , f |R̃) < ε.

13



Similarly we have that L(P, f |S) = L(P̃ , f |R̃) and therefore∫
S

f =

∫
R̃

f.

Since R̃ ⊂ R we also get

∫
R

f =

∫
R̃

f , or in other words

∫
R

f =

∫
S

f .

7 Iterated Integrals and Fubini’s Theorem

The Riemann integral in several variables is hard to compute from the definition. For one-

dimensional integral we have the fundamental theorem of calculus and we can compute

many integrals without having to appeal to the definition of the integral. We will rewrite

a Riemann integral in several variables into several one-dimensional Riemann integrals by

iterating. However, if f : [0, 1]2 −→ R is a Riemann integrable function, it is not immediately

clear if the three expressions∫
[0,1]2

f,

∫ 1

0

∫ 1

0

f(x, y) dxdy, and

∫ 1

0

∫ 1

0

f(x, y) dydx

are equal, or if the last two are even well-defined.

7.1 Example

Define

f(x, y) :=

1 if x = 1/2 and y ∈ Q,

0 otherwise.

Then f is Riemann integrable onR := [0, 1]2 and

∫
R

f = 0. Furthermore,

∫ 1

0

∫ 1

0

f(x, y) dxdy = 0.

However ∫ 1

0

f(1/2, y) dy

does not exist, so we cannot even write

∫ 1

0

∫ 1

0

f(x, y) dxdy = 0.

Proof. Let us start with the integrability of f . We simply take the partition of [0, 1]2 where

the partition in the x direction is {0, 1/2− ε, 1/2 + ε, 1} and in the y direction {0, 1}. The
sub-rectangles of the partition are

R1 := [0, 1/2− ε]× [0, 1], R2 := [1/2− ε, 1/2 + ε]× [0, 1], R3 := [1/2 + ε, 1]× [0, 1].

14



We have m1 = M1 = 0,m2 = 0,M2 = 1, and m3 = M3 = 0. Therefore,

L(P, f) = m1(1/2− ε) · 1 +m2(2ε) · 1 +m3(1/2− ε) · 1 = 0,

and

U(P, f) = M1(1/2− ε) · 1 +M2(2ε) · 1 +M3(1/2− ε) · 1 = 2ε.

The upper and lower sum are arbitrarily close and the lower sum is always zero, so the

function is integrable and

∫
R

f = 0.

For any y, the function that takes x to f(x, y) is zero except perhaps at a single point

x = 1/2. We know that such a function is integrable and

∫ 1

0

f(x, y) dx = 0. Therefore,∫ 1

0

∫ 1

0

f(x, y) dxdy = 0.

However if x = 1/2, the function that takes y to f(1/2, y) is the non-integrable function

that is 1 on the rationals and 0 on the irrationals.

Theorem 7.1. (Fubini version I). Let R× S ⊂ Rn × Rm be a closed rectangle and

f : R× S −→ R be integrable. The functions g : R −→ R and h : R −→ R defined by

g(x) :=

∫
S

fx and h(x) :=

∫
S

fx

are integrable over R and ∫
R

g =

∫
R

h =

∫
R×S

f.

In other words∫
R×S

f =

∫
R

(∫
S

f(x, y) dy

)
dx =

∫
R

(∫
S

f(x, y) dy

)
dx.

If it turns out that fx is integrable for all x, for example when f is continuous, then we

obtain the more familiar ∫
R×S

f =

∫
R

∫
S

f(x, y) dydx.

Proof. Let P be a partition of R and P ′ be a partition of S. Let R1, R2, . . . , RN be the

sub-rectangles of P and R′
1, R

′
2, . . . , R

′
K be the sub-rectangles of P ′. Then P × P ′ is the

partition whose sub-rectangles are Rj ×R′
k for all 1 ≤ j ≤ N and all 1 ≤ k ≤ K.

Let

mj,k := inf
(x,y)∈Rj×R′

k

f(x, y).

15



We notice that V (Rj ×R′
k) = V (Rj)V (R′

k) and hence

L(P × P ′, f) =
N∑
j=1

K∑
k=1

mj,kV (Rj ×R′
k) =

N∑
j=1

(
K∑
k=1

mj,kV (R′
k)

)
V (Rj).

If we let

mk(x) := inf
y∈R′

k

f(x, y) = inf
y∈R′

k

fx(y),

then of course if x ∈ Rj then mj,k ≤ mk(x). Therefore

K∑
k=1

mj,kV (R′
k) ≤

K∑
k=1

mk(x)V (R′
k) = L(P ′, fx) ≤

∫
S

fx = g(x).

As we have the inequality for all x ∈ Rj we have

K∑
k=1

mj,kV (R′
k) ≤ inf

x∈Rj

g(x).

We thus obtain

L(P × P ′, f) ≤
N∑
j=1

(
inf
x∈Rj

g(x)

)
V (Rj) = L(P, g).

Similarly U(P × P ′, f) ≥ U(P, h). Putting this together we have

L(P × P ′, f) ≤ L(P, g) ≤ U(P, g) ≤ U(P, h) ≤ U(P × P ′, f).

And since f is integrable, it must be that g is integrable as

U(P, g)− L(P, g) ≤ U(P × P ′, f)− L(P × P ′, f),

and we can make the right hand side arbitrarily small. Furthermore as L(P × P ′, f) ≤
L(P, g) ≤ U(P × P ′, f) we must have that∫

R

g =

∫
R×S

f.

Similarly we have

L(P × P ′, f) ≤ L(P, g) ≤ L(P, h) ≤ U(P, h) ≤ U(P × P ′, f),

and hence

U(P, h)− L(P, h) ≤ U(P × P ′, f)− L(P × P ′, f).
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So if f is integrable so is h, and as L(P ×P ′.f) ≤ L(P, h) ≤ U(P ×P ′, f) we must have that∫
R

h =

∫
R×S

f.

Theorem 7.2. (Fubini Version II). Let R × S ⊂ Rn × Rm be a closed rectangle and f :

R× S −→ R be integrable. The function g : S −→ R and h : S −→ R defined by

g(y) :=

∫
R

fy and h(y) :=

∫
R

fy

are integrable over S and ∫
S

g =

∫
S

h =

∫
R×S

f.

That is we also have∫
R×S

f =

∫
S

(∫
R

f(x, y) dy

)
dx =

∫
S

(∫
R

f(x, y) dy

)
dx.

Next suppose that fx and fy are integrable for simplicity. For example, suppose that f

is continuous. Then by putting the two versions together we obtain the familiar∫
R×S

f =

∫
R

∫
S

f(x, y) dydx =

∫
S

∫
R

f(x, y) dxdy.

Often the Fubini’s theorem is stated in two dimensions for a continuous function

f : R −→ R on a rectangle R = [a, b]× [c, d]. Then the Fubini’s theorem states that∫
R

f =

∫ b

a

∫ d

c

f(x, y) dydx =

∫ d

c

∫ b

a

f(x, y) dxdy.

And the Fubini’s theorem is commonly thought of as the theorem that allows us to swap the

order of iterated integrals.

Repeatedly applying Fubini’s theorem gets us the following corollary; Let R := [a1, b1]×
[a2, b2]× · · · × [an, bn] ⊂ Rn be a closed rectangle and let f : R −→ R be continuous. Then∫

R

f =

∫ b1

a1

∫ b2

a2

· · ·
∫ bn

an

f(ζ1, ζ2, ζ3, . . . , ζn) dζndζn−1 · · · dζ1.

Clearly we can also switch the order of integration to any order we please. We can also relax

the continuity requirement by making sure that all the intermediate functions are integrable,

or by using upper or lover integrals.

17



7.2 Examples.

1. Compute, ∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dxdy and

∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dydx.

Firstly, we consider the ”innermost” integral.∫ 1

0

x2 − y2

(x2 + y2)2
dy =

∫ 1

0

x2 + y2 − 2y2

(x2 + y2)2
dy =

∫ 1

0

dy

x2 + y2
−
∫ 1

0

2y2

(x2 + y2)2
dy

=

∫ 1

0

dy

x2 + y2
+

∫ 1

0

y
d

dy

(
1

x2 + y2

)
=

∫ 1

0

dy

x2 + y2
+

([
y

x2 + y2

]y=1

y=0

−
∫ 1

0

dy

x2 + y2

)
=

1

1 + x2

This takes care of the ”innermost” integral with respect to y; now we do the ”outermost”

integral with respect to x and we have∫ 1

0

1

1 + x2
dx =

π

4
.

Thus, we have∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dxdy = −π

4
and

∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dydx =

π

4
.

2. Compute, ∫
R

|xy| dA

where R is the rectangle 0 ≤ x ≤ 2,−1 ≤ y ≤ 1.

Observe that the function f(x, y) = |xy| is not really discontinuous; however, its formula in

terms of the variables x and y depends on the sign of xy. Since x is always positive within

the rectangle R, we have

f(x, y) =

−xy −1 ≤ y < 0,

xy 0 ≤ y ≤ 1.

Thus, by Fubini’s theorem∫
R

f(x, y) dA =

∫ 2

0

(∫ 1

−1

f(x, y) dy

)
dx =

∫ 2

0

(∫ 0

−1

f(x, y) dy +

∫ 1

0

f(x, y) dy

)
dx

=

∫ 2

0

(∫ 0

−1

−xy dy +

∫ 1

0

fxy dy

)
dx =

∫ 2

0

x dx = 2
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8 The Set of Riemann Integrable Functions

Before we characterize all Riemann integrable functions, we need to make a slight detour.

We introduce a way of measuring the size of sets in Rn.

Definition 4. Let S ⊂ Rn be a subset. We define the outer measure of S as

m∗(S) := inf
∞∑
j=1

V (Rj),

where the infimum is taken over all sequences {Rj} of open rectangles such that S ⊂
⋃∞

j=1Rj.

In particular, S is of measure zero or a null set if m∗(S) = 0.

We will only need measure zero sets and so we focus on these. Note that S is of measure

zero if and only if for every ε > 0 there exists a sequence of open rectangles {Rj} such that

S ⊂
∞⋃
j=1

Rj and

∞∑
j=1

V (Rj) < ε.

Further-more, if S is measure zero and S ′ ⊂ S, then S ′ is of measure zero. We can in fact

use the same exact rectangles.

We can also use balls and it is sometimes more convenient. In fact we can choose balls

no bigger than a fixed radius.

9 Oscillation and Continuity

Let S ⊂ Rn be a set and f : S −→ R a function. Instead of just saying that f is or is not

continuous at a point x ∈ S we need to able to quantify how discontinuous f is as a function

at x. For any δ > 0 we define the oscillation of f on the δ-ball in a subset topology that is

BS(x, δ) = BRn(x, δ) ∩ S as

o(f, x, δ) := sup
y∈BS(x,δ)

f(y)− inf
y∈BS(x,δ)

f(y) = sup
y1,y2∈BS(x,δ)

(f(y1)− f(y2)).

That is, o(f, x, δ) is the length of the smallest interval that contains the image f(BS(x, δ)).

Clearly o(f, x, δ) ≥ 0 and notice o(f, x, δ) ≤ o(f, x, δ′) whenever δ < δ′. Therefore, the limit

as δ → 0 from the right exists and we define the oscillation of a function f at x as

o(f, x) := lim
δ→0+

o(f, x, δ) = inf
δ>0

o(f, x, δ).

Lemma 9.1. f : S −→ R is continuous at x ∈ S if and only if o(f, x) = 0.

Proof. First suppose that f is continuous at x ∈ S. Then given any ε > 0, there exists a

δ > 0 such that for y ∈ BS(x, δ) we have |f(x) − f(y)| < ε. Therefore if y1, y2 ∈ BS(x, δ)

19



then

f(y1)− f(y2) = f(y1)− f(x)− (f(y2)− f(x)) < ε+ ε = 2ε.

We take the supremum over y1 and y2 then,

o(f, x, δ) = sup
y1,y2∈BS(x,δ)

(f(y1)− f(y2)) ≤ 2ε.

Hence, o(f, x) = 0.

On the other hand suppose that o(x, f) = 0. Given any ε > 0, find a δ > 0 such that

o(f, x, δ) < ε. If y ∈ BS(x, δ) then,

|f(x)− f(y)| ≤ sup
y1,y2∈BS(x,δ)

(f(y1)− f(y2)) = o(f, x, δ) < ε.

10 The Set of Riemann Integrable Functions

We have seen that continuous functions are Riemann integrable, but we also know that

certain kinds of discontinuities are allowed. It turns out that as long as the discontinuities

happen on a set of measure zero, the function is integrable and vice versa.

Theorem 10.1. (Riemann-Lebesgue). Let R ⊂ Rn be a closed rectangle and f : R −→ R a

bounded function. Then f is Riemann integrable if and only if the set of discontinuities of

f is of measure zero (a null set).

Proof. Let S ⊂ R be the set of discontinuities of f . That is S = {x ∈ R : o(f, x) > 0}. The
trick of this proof is to isolate the bad set into a small set of sub-rectangles of a partition.

There are only finitely many sub-rectangles of a partition, so we will wish to use compactness.

If S is closed, then it would be compact and we could cover it by small rectangles as it is of

measure zero. Unfortunately, in general S is not closed so we need to work a little harder.

For every ε > 0, define

Sε := {x ∈ R : o(f, x) ≥ ε}.

Thus, Sε is closed and as it is a subset of R which is bounded, Sε is compact. Further-more,

Sε ⊂ S and S is of measure zero. We see that there are finitely many open rectangles

S1, S2, . . . , Sk that cover Sε and
∑

V (Sj) < ε.

The set T = R \ (S1 ∪ S2 ∪ · · · ∪ Sk) is closed, bounded, and therefore compact. Further-

more for x ∈ T , we have o(f, x) < ε. Hence for each x ∈ T , there exists a small closed

rectangle Tx with x in the interior of Tx, such that

sup
y∈Tx

f(y)− inf
y∈Tx

f(y) < 2ε.
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The interiors of the rectangles Tx cover T . As T is compact there exist finitely many such

rectangles T1, T2, . . . , Tm that covers T .

Now take all the rectangles T1, T2, . . . , Tm and S1, S2, . . . , Sk and construct a partition

out of their endpoints. That is construct a partition P with sub-rectangles R1, R2, . . . , Rp

such that every Rj is contained in Tℓ for some ℓ or the closure of Sℓ for some ℓ. Suppose

we order the rectangles so that R1, R2, . . . , Rq are those that are contained in some Tℓ, and

Rq+1, Rq+2, . . . , Rp are the rest. In particular, we have

q∑
j=1

V (Rj) ≤ V (R) and

p∑
j=q+1

V (Rj) ≤ ε.

Let mj and Mj be the inf and sup over Rj as before. If Rj ⊂ Tℓ for some ℓ, then (Mj−mj) <

2ε. Let B ∈ R such that |f(x)| ≤ B for all x ∈ R, so (Mj −mj) < 2B over all rectangles.

Then

U(P, f)− L(P, f) =

p∑
j=1

(Mj −mj)V (Rj) =

(
q∑

j=1

(Mj −mj)V (Rj)

)
+

(
p∑

j=q+1

(Mj −mj)V (Rj)

)

≤

(
q∑

j=1

2εV (Rj)

)
+

(
p∑

j=q+1

2BV (Rj)

)
≤ 2εV (R) + 2Bε = ε(2V (R) + 2B).

Clearly, we can make the right hand side as small as we want and hence f is integrable.

For the other direction, suppose that f is Riemann integrable over R. Let S be the set

of discontinuities again and now let

Sk := {x ∈ R : o(f, x) ≥ 1/k}.

Fix a k ∈ N. Given an ε > 0, find a partition P with sub-rectangles R1, R2, R3, . . . , Rp such

that

U(P, f)− L(P, f) =

p∑
j=1

(Mj −mj)V (Rj) < ε

Suppose that R1, R2, . . . , Rp are ordered so that the interiors of R1, R2, . . . , Rq intersect Sk,

while the interiors of Rq+1, Rq+2, . . . , Rp are disjoint from Sk. If x ∈ Rj ∩ Sk and x is in the

interior of Rj so sufficiently small balls are completely inside Rj, then by definition of Sk we

have Mj −mj ≤ 1/k. Then

ε >

p∑
j=1

(Mj −mj)V (Rj) ≥
q∑

j=1

(Mj −mj)V (Rj) ≤
1

k

q∑
j=1

V (Rj)

In other words

q∑
j=1

V (Rj) < kε. Let G be the set of all boundaries of all the sub-rectangles
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of P . The set G is of measure zero. Let Ro
j denote the interior of Rj, then

Sk ⊂ Ro
1 ∪Ro

2 ∪Ro
3 ∪ · · · ∪Ro

q ∪G.

As G can be covered by open rectangles arbitrarily small volume, Sk must be of measure

zero. As

S =
∞⋃
k=1

Sk

and a countable union of measure zero sets is of measure zero. S is of measure zero.

11 Application to Summation of Series

in R

The theory of limits of finite approximations was made precise by the German mathematician

Bernhard Riemann. We now introduce the notion of a Riemann sum, which underlies the

theory of definite integrals. We begin with an arbitrary bounded function f defined on a

closed interval [a, b]. Like the function pictured below (Figure 4.1), f may have negative as

well as positive values. We subdivide the interval [a,b] into subintervals, not necessarily of

equals widths or lengths, and form sums in the same way as for the finite approximations.

In each subinterval we select some point. The point chosen in the kth subinterval [xk−1, xk]

is called ck. Then on each subinterval we stand a vertical rectangle that stretches from the

x − axis to touch the curve at (ck, f(ck)). These rectangles can be above or below the

x− axis, depending on whether f(ck) is positive or negative, or on the x− axis if f(ck) = 0

(Figure 4.2).

Figure 3: A typical continuous function y = f(x) over a closed interval [a, b]
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Figure 4: The rectangles approximate the region between the graph of the function y = f(x)
and the x−axis. Figure 4.1 has been enlarged to enhance the partition of [a, b] and selection
of points ck that produce the rectangles.

On each subinterval we form the product f(ck) ·∆xk. This product is positive, negative,

or zero, depending on the sign of f(ck).

Finally we sum all these products to get

Sp =
n∑

k=1

f(ck)∆xk.

The sum Sn is called a Riemann sum for f on the interval [a,b]. There are many

such sums, depending on the partition P we choose, and the choices of the points ck in the

subintervals. Here we choose ∆x = (b−a)/n to partition [a, b], and then choose the point ck

to be the right-handed endpoint of each subinterval when forming the Riemann sum. This

choice leads to the Riemann sum formula

Sn =
n∑

k=1

f

(
a+ k

(b− a)

n

)
·
(
b− a

n

)

Definition 5. Let f(x) be a function defined on a closed interval [a, b]. We say that a

number J is the definite integral of f over [a, b] and that J is the limit of the Riemann sum
n∑

k=1

f(ck)∆xk if the following condition is satisfied:

Given any number ε > 0 there is a corresponding number δ > 0 such that for every

partition P of [a, b] with ∥P∥ < δ and any choice of ck in [xk−1, xk], we have∣∣∣∣∣
n∑

k=1

f(ck)∆xk − J

∣∣∣∣∣ < ε.
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The symbol for the number J in the definition of the definite integral is∫ b

a

f(x) dx.

So we can write,

J =

∫ b

a

f(x) dx = lim
n→∞

n∑
k=1

f(ck)

(
b− a

n

)
= lim

n→∞

n∑
k=1

f

(
a+ k

(b− a)

n

)(
b− a

n

)

12 Examples.

1. Evaluate

lim
n→∞

(
1

n

(
1

n

)2

+
1

n

(
2

n

)2

+
1

n

(
3

n

)2

+ · · ·+ 1

n

(n
n

)2)
Now,

lim
n→∞

(
1

n

(
1

n

)2

+
1

n

(
2

n

)2

+
1

n

(
3

n

)2

+ · · ·+ 1

n

(n
n

)2)
= lim

n→∞

n∑
i=1

1

n

(
i

n

)2

= lim
n→∞

n∑
i=1

1− 0

n

(
0 + i

(1− 0)

n

)2

=

∫ 1

0

x2 dx =
1

3

That is

lim
n→∞

(
1

n

(
1

n

)2

+
1

n

(
2

n

)2

+
1

n

(
3

n

)2

+ · · ·+ 1

n

(n
n

)2)
=

1

3

2. Evaluate

lim
n→∞

(
3

n

(
2 +

3

n

)2

+
3

n

(
2 +

6

n

)2

+
3

n

(
2 +

9

n

)2

+ · · ·+ 3

n

(
2 +

3n

n

)2
)

Notice,

lim
n→∞

(
3

n

(
2 +

3

n

)2

+
3

n

(
2 +

6

n

)2

+
3

n

(
2 +

9

n

)2

+ · · ·+ 3

n

(
2 +

3n

n

)2
)

= lim
n→∞

n∑
i=1

3

n

(
2 +

3i

n

)2

= lim
n→∞

n∑
i=1

(5− 2)

n

(
2 + i

(5− 2)

n

)2

=

∫ 5

2

x2 dx = 39

It follows immediately that,

lim
n→∞

(
3

n

(
2 +

3

n

)2

+
3

n

(
2 +

6

n

)2

+
3

n

(
2 +

9

n

)2

+ · · ·+ 3

n

(
2 +

3n

n

)2
)

= 39
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3. Find a closed form for,

lim
n→∞

(
b− a

n
(
a+ b−a

n

)2 +
b− a

n
(
a+ 2 b−a

n

)2 +
b− a

n
(
a+ 3 b−a

n

)2 + · · ·+ b− a

n
(
a+ n b−a

n

)2
)

Observe that,

lim
n→∞

(
b− a

n
(
a+ b−a

n

)2 +
b− a

n
(
a+ 2 b−a

n

)2 +
b− a

n
(
a+ 3 b−a

n

)2 + · · ·+ b− a

n
(
a+ n b−a

n

)2
)

= lim
n→∞

b− a

n

n∑
k=1

(
a+

b− a

n
k

)−2

Now let

Sn =
b− a

n

n∑
k=1

(
a+

b− a

n
k

)−2

Observe that
b− a

n

n∑
k=1

(
a+

b− a

n
k

)−1(
a+

b− a

n
(k + 1)

)−1

≤ Sn

Thus,

Sn ≤ b− a

n

n∑
k=1

(
a+

b− a

n
k

)−1(
a+

b− a

n
(k − 1)

)−1

And decomposing into partial fractions we have,

n∑
k=1

{(
a+

b− a

n
k

)−1

−
(
a+

b− a

n
(k + 1)

)−1
}

≤ Sn

Likewise

Sn ≤
n∑

k=1

{(
a+

b− a

n
(k − 1)

)−1

−
(
a+

b− a

n
k

)−1
}

Notice the sums are telescoping, then it follows that(
a+

b− a

n

)−1

−
(
a+

b− a

n
(n+ 1)

)−1

≤ Sn ≤ 1

a
− 1

b

By the squeeze theorem, we get that

lim
n→∞

Sn = lim
n→∞

(
b− a

n
(
a+ b−a

n

)2 +
b− a

n
(
a+ 2 b−a

n

)2 +
b− a

n
(
a+ 3 b−a

n

)2 + · · ·+ b− a

n
(
a+ n b−a

n

)2
)

=
1

a
−1

b
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But we can make things more easier simply by noting the Riemann sum

∫ b

a

x−2 dx = lim
n→∞

(
b− a

n
(
a+ b−a

n

)2 +
b− a

n
(
a+ 2 b−a

n

)2 +
b− a

n
(
a+ 3 b−a

n

)2 + · · ·+ b− a

n
(
a+ n b−a

n

)2
)

4. Show that∫ π

0

log(a2 + b2 − 2ab cos(x)) dx = 2π log(max{a, b}) (Bronstein Integral)

Now, suppose WLOG b > a. Then with c = b/a we have

I =

∫ π

0

log(a2 + b2 − 2ab cos(x)) dx =

∫ π

0

log(a2) dx+

∫ π

0

log(1 + (b/a)2 − 2(b/a) cos(x)) dx

= 2π log(a) +

∫ π

0

log(1 + c2 − 2c cos(x)) dx︸ ︷︷ ︸
J

Now we can evaluate the second integral on the RHS as the limit of a Riemann sum

J =

∫ π

0

log(1 + c2 − 2c cos(x)) dx = lim
n→∞

π

n

n∑
j=1

log

(
1 + c2 − 2c cos

(
π(j − 1)

n

))

= lim
n→∞

π

n
log

(
n∏

j=1

(
1 + c2 − 2c cos

(
π(j − 1)

n

)))
= lim

n→∞
log((1− c)2)

+ lim
n→∞

π

n
log

(
n∏

j=2

(
1 + c2 − 2c cos

(
π(j − 1)

n

)))
= lim

n→∞

π

n
log

(
n−1∏
j=1

(
1 + c2 − 2c cos

(
jπ

n

)))

Notice we can factor,

1 + c2 − 2c cos

(
jπ

n

)
= [c− exp(iπj/n)][c− exp(−iπj/n)],

Hence, recalling that c = b/a > 1, it follows that

J = lim
n→∞

π

n
log

(
c2n − 1

c2 − 1

)
= π lim

n→∞
log

(
c2n − 1

c2 − 1

)1/n

= π lim
n→∞

log

[
c2
(
c2n − 1

c2 − 1

)1/n
]

= π log(c2) + log

[
lim
n→∞

(
c2n − 1

c2 − 1

)1/n
]
= π log(c2)

Thus,

I = 2π log(a) + π log(c2) = 2π log(a) + π log((b/a)2) = 2π log(b)

Hence, we conclude ∫ π

0

log(a2 + b2 − 2ab cos(x)) dx = 2π log(max{a, b})
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2Riemann : If only I had the theorems! Then I should find the proofs easily enough.
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