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Abstract  
Strophoids are a family of cubic plane curves, which are usually investigated 

using algebraic methods. This article is unique in that it takes a purely geometric 

approach to the analysis of strophoids. In this article, strophoids are shown to 

arise from a range of geometric constructions, each providing a distinct way of 

exploring the strophoids’ properties. 

The article takes place solely in the Euclidean plane. 

Key words: Strophoid, inversion, bisector hyperbola, cyclinear conjugate, pedal 

curve, inscribed conics. 
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1. Primary geometric definition of a strophoid 
 

Let there be points F, D; with a line ℒ  passing through D. There is a circle 𝜔 
passing through D, with center P lying on ℒ. Line FP intersects 𝜔 in points N 
and M. The strophoid is the trace of points: N, M; as P slides on ℒ. 
 

Defining the features of the strophoid: 

1) The node or the double-point of the strophoid is point D. 
2) The focus is point F. 
3) The axis of the strophoid is a line (ℒ ) through the node that is 
parallel to the asymptote. 

A strophoid is called a right strophoid if it has a line of symmetry ⟹ 𝐹𝐷 ⊥ ℒ 

2. Isogonal conjugate 
 

The isogonal conjugate of P, P* or 
I(P), about some triangle ABC is 
constructed by reflecting lines AP, 

BP, CP, about the corresponding 
angle bisector, and finding the 

intersection point.  

It is known that the isogonal 
conjugate of every point of a line 

is some conic that is passing 
through every vertex of the 

triangle (a circumconic). 

 

  

    

      

  

  

  

  

  

  

Diagram 1 

Diagram 2 
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3. Strophoids as inverses 
 

Statement: A strophoid inverted with the center of inversion at the node is 
a rectangular hyperbola. 

Continuing with the construction in the primary definition, let h be the 

perpendicular bisector of DF, Ω be a circle with center D passing through F, 
and (ψ)’ denote the inversion of an object ψ in Ω. 

 

ω' becomes a line perpendicular 
to ℒ, (PF)’ passes through M’, N’, F, 

D. Since points D and F are fixed 
the center of (PF)’, O, will move 

along h, as P moves (diagram 3.1). 

Now the inverse of the strophoid 
can be redefined as loci of N’, M’;  

as L moves on h (diagram 3.2). 

(PF)’ is a circle through F, L, D;  
ω' is a line through O at a constant 

angle 2φ with h ⟹ LN’ makes a 
constant angle φ with h. 

Let A be a point such that the angle 

bisector of FAD is parallel to LN’     
⟹  ∠N’FA=∠N’DA=δ. 

Isogonal conjugate N’ with respect to ADF, N’*, therefore, forms angles 

∠N’*FD=∠N’*DF=δ ⟹ N’* lies on h. Since the locus of N’* is a line, the locus 
of N’ is some circumconic1 (in pink). This conic is known to be a rectangular 

hyperbola because it passes through the orthocenter of ADF ( I(OADF) ).  

 

Thus, the inversion of the strophoid at its node is a rectangular hyperbola. 

 

 

 
1 Such conic, that is the locus of points T such that the angle bisector of DTF is parallel to the one 

at DAF, will be called the bisector hyperbola of △DAF (notice the symmetry of the notation). 

Diagram 3.1 
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Diagram 3.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fact that strophoids are inversions of  a second degree curve implies 
that a circle can have at most 4 real intersections with a strophoid. 

 

4. Cyclinear conjugate 
 

The cyclinear conjugate of point P with 

respect to △BAC, P°  or 𝛩𝐴(𝑃), is defined 
as the point cyclic with P, B, C; and 

collinear with A, P. 

It is easy to see that this transformation 
is also involutory, like the isogonal 

transformation. 

  

  
  

  

    

Diagram 4.1 
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Diagram 4.2 Diagram 4.3 

We now will go on to show that isogonal and cyclinear transformations are 
commutative: 

 

Let ∠𝐵𝐴𝐶, ∠𝑃𝐴𝐶 = 𝛼, 𝛿 respectively 

Then: 

 

∠𝑃𝐴𝐶 = ∠𝐵𝐴𝑃∘∗ = 𝐵𝐴𝑃∗∘

∠𝑃∗∘𝐵𝐴 = ∠𝐶𝑃𝐴
∠𝑃∘∗𝐵𝐴 = ∠𝐶𝑃𝐴

} ⟹ {
△ P∗∘BA ∼△ CAP
△ P∘∗BA ∼△ CAP

                                             
                                           ∠PAP∘∗ = α + 2δ = ∠PAP∗∘}

 

 
⟹ P∗∘ ≡ P∘∗ 

 

Therefore, we define a new transformation: 

𝑅𝐴(𝑋) = 𝐼(𝛩𝐴(𝑋)) = 𝛩𝐴(𝐼(𝑋)) 

Using the aforementioned triangle similarity, we can find that: 

|𝐴𝑃°∗|

|𝐴𝐵|
=
|𝐴𝐶|

|𝐴𝑃|
 

|𝐴𝑃°∗| ∙ |𝐴𝑃| = |𝐴𝐵| ∙ |𝐴𝐶| 

Therefore RA(P) is equivalent to reflecting the point P about the angle 

bisector of BAC, and inverting it about the circle with radius √|𝐴𝐵| ∙ |𝐴𝐶|, 

center A. 
 

 

Diagram 4.1 1 

 

Diagram 4.1 2 
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One can analogously prove that: 𝛩𝐵(𝛩𝐶(𝑋)) = 𝛩𝐶(𝛩𝐵(𝑋)) = 𝑅𝐴(𝑋)  

Since all the transformations are commutative and associative (as well as 

involutory) notation similar to the one in group theory will be used. 

From the two observations made earlier the following list of properties can 
be deduced: 

𝐼𝛩𝐴(𝑋) = 𝑅𝐴(𝑋) 
𝑅𝐴(𝑋) = 𝛩𝐵𝛩𝐶(𝑋) 
𝑅𝐴𝑅𝐵𝑅𝐶(𝑋) = 𝑋 
𝛩𝐴𝛩𝐵𝛩𝐶(𝑋) = 𝐼(𝑋) 
 

𝑅𝐴(𝐵) = 𝐶 
𝑅𝐴(𝒂) = ○ (𝐴𝐵𝐶) 
𝑅𝐴(𝒥) =  𝒥𝐴  

𝑅𝐴(𝒥𝐵) =  𝒥𝐶  
 

  
Where 𝒂 is the side BC, 𝒥 is the incenter, 𝒥A is the excentre of A. 

  

The set of points which are invariant under cyclinear transformation is a 
curve known as a focal cubic, that we will call 𝒻. A point on 𝒻 is constructed 

by drawing a tangent from A to some circle through B,C; and finding the point 
of tangency. It is easy to see that if some point P is on 𝒻, then 𝑅𝐴(𝑃) remains 
on 𝒻. This means that 𝒻 is also self-isogonal. 

A particularly interesting property of curve 𝒻, is that when points B and C are 
«glued» together (B becomes equal to C, preserving the direction of BC), 𝒻 
becomes a strophoid.  

  

  

    

  
  

  
  

 

Diagram 4.4 
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5. Strophoids in triangles 
 

Let ℓ be a line through the circumcenter O of triangle ABC. Then 𝐼(ℓ)  is a 

circumconic 𝒽, which is a rectangular hyperbola since it passes through the 
orthocenter of ABC.  

𝛩𝐴(ℓ) = 𝐼𝛩𝐴𝐼(ℓ) = 𝑅𝐴(𝐼(ℓ)) = 𝑅𝐴(𝒽) 

    ⟹ the cyclinear conjugate of ℓ is an inversion of a rectangular hyperbola, 
a strophoid. 

𝛩𝐴(ℓ) = 𝐼𝛩𝐴𝐼(ℓ) = 𝐼(𝑅𝐴(ℓ)) 

⟹ strophoids are also isogonal conjugates of some circle 𝒸 = 𝑅𝐴(ℓ).  
It can be easily seen that 𝒸 passes through A and has its center on BC. 

The node of the strophoid is at A, and it is trivial to show that it will pass 

through the other two vertices of the triangle. As established, strophoid is a 
third degree curve, therefore it intersects the base of the triangle 3 times. 

Through some quick inspection, one obtains the following list of properties 
of features of the strophoid 𝓈:  

• The focus is the inverse of the center of circle 𝒸 about ○(ABC). 

• The focus is the cyclinear conjugate of the second intersection of ℓ 

with ○(BOC). 

• The axis is the line through A and intersection of ℓ and BC. 

• The line through A and the third intersection of BC with 𝓈 is 

parallel to ℓ. 

  

    

  

  

    

  

 

 
  

    

  

    

  

    

  

  

Diagram 5.1 Diagram 5.2 
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If 𝓈 is a right strophoid, it can be shown that the line through the center of 𝒸  
and the intersection of 𝒸 and ○(ABC) is perpendicular to BC. As an exercise, 

one could try to show that finding such centers of 𝒸 is equivalent to 
intersecting some strophoid with BC. 

Using the property that 𝑅𝐵𝑅𝐴(𝑋) = 𝑅𝐶(𝑋) on the hyperbola 𝒽, we can see 
that strophoids are self-inversive at any point other than the node, as: 

 𝑅𝐵𝑅𝐴(𝒽) = 𝑅𝐶(𝒽) ⟹ 𝑅𝐵(𝓈) = 𝑅𝐶(𝒽) 

6. Strophoids and inscribed conics 
 

Let h be the perpendicular bisector 
of BC. Then 𝛩𝐴(h) is the locus of foci 

of conic sections that are tangent to 
AB, AC; at points B, C; respectively. 

The reason for thit is the fact that for 

some point P on h,  line PP° is the 
angle bisector of BP°C. Thus, A lies 

on the angle bisector of BP°C, which 
is exactly the property of the foci of 

the aforementioned conic. 

Therefore, this strophoid is called 
the “bisector strophoid of △BAC”. 

The isogonal conjugate of this 

strophoid is the Apollonius circle of  
vertex A, and 𝑅𝐴(𝓈) = 𝐼(h)  is the 

bisector hyperbola of △BAC. 

 

Using the line definition, we can see that the axis of the bisector strophoid is 
the median, the third intersection with BC is at the projection of A on BC, and 
the focus lies on the symmedian from A.  

The three bisector strophoids, with the nodes being each of the vertices of 
the triangle, all intersect at both Fermat–Torricelli points. This is another 

proof of Apollonius and Torricelli points being isogonal conjugates. 
 

  

  

  

  

  

    

  

 

Diagram 6 
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7. Strophoids as pedal curves 

Statement:  

A pedal curve of a parabola, with 
the axel on the directrix, is a 

strophoid. 

 
Let there be a parabola with focus 

F and directrix ℒ . Some points D 
and T are placed on ℒ. PT and QT 

are tangents to the parabola. M, 
N; are the reflections of D in PT, 

QT; respectively. 

 
It is known that QT bisects the 

angle between FT and ℒ, hence N, 
the reflection of D, lies on FT. 

Analogously, point M lies on FT 
⟹ N, M, T, F; are collinear. 

 

Another consequence of the bisection property is that that ∠PTQ = 90° ⟹ 
∠M𝐃N = 90°  ⟹ ○(MND) is centered at T. 

Thus, as T moves on ℒ, points M and N can be defined in the same way as 
they are in the primary definition. Therefore, the pedal curve of a parabola, 

which is a homothety (𝐷,
1

2
) of this construction, is a strophoid. 

 

By inspection, tangents of the strophoid at the double point are orthogonal 
to each other. Furthermore, they are angle bisectors between FD and ℒ. 

Due to properties of pedal curves, it is known2 that tangent to the strophoid 

at M is also tangent to ○(MPF) ⟹ tangent at M is perpendicular to MP.  

Let U, V; be distinct points on the strophoid such that the tangents at those 
points are parallel to the axis. It can be proven that the line UV passes 
through F and is perpendicular to FD. Hence, U and V are equidistant from ℒ. 
In fact, the distance is exactly FD. 

 
2 See “Note on Curvature of Pedal and Reciprocal Curves” by Benjamin H. Steede 

 

Diagram 7 

  

  

  

  

  

  

  

https://www.jstor.org/stable/20490538
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8. Circles inscribed into strophoids 

  

Let O, O1, be the centers of ○(ABC), 
○(BOC); and ℓ intersect: 

BC, AC, AB; at points X, Y, Z. 

 ○(ABC) at points K, R. 
 ○(BOC) at point E ≠ O. 

respectively. 

Notice that 𝛩𝐴(𝑌) = 𝐵,  therefore 

○(BYC) is tangent to the strophoid  
at B. Same applies for points Z and C.  

If there is some circle through B, C, 
which is tangent to the strophoid 

both at B and C, then points B, C, Z, Y; 
are cyclic ⟹ ℓ⊥OA. 

 

Now consider ΘA(K) and ΘA(R). Both are equal to A ⟹ lines AK and AR are 
tangent to the strophoid. 

 

𝑂𝐾 = 𝑂𝑅
𝐾𝑅 ⊥ 𝑂𝐴

 } ⟹ ∠𝑂𝐴𝑅 = ∠𝑂𝐴𝐾  

⟹ O lies on the angle bisector of the tangents at the node. 

Another consequence of ℓ ⊥ OA is that that 𝑂°𝑭 ⊥ 𝐴𝑭. Notice that we 
previously established (section 5) that the tangent to the strophoid at such 
points (𝑂°) is parallel to the axis (AX). Then we can notice that the circle 

concentric with ○(BCZY) passing through F touches the tangent to 𝓈 at 𝑂°. 
To show thit we should consider the line O1E and prove that it is 

perpendicular to AX. To do this one should assume that O1E is perpendicular 
to AX, and consider circles ○(BCZY), ○(ABC), ○(AOE) and the power of point 

X to show that E lies on ○(BOC). 

Centers of all circles inscribed into the strophoid are equidistant from F and 
one of the parallel tangents ⟹ The locus of all centers of such circles is a pair 

of parabolas (diagram 8.2, in green). Those parabolas have their foci at F, and 
directrices at the aforementioned tangents parallel to the axis. 

 

    

    
  

  

  

    

  
  

  

  

  

  

 

Diagram 8.1 
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Diagram 8.2 

 

 

 

 

 

 

 

 

9. Locus of an orthocenter 
 

Statement: Given a circle ω with center O, points A, B on ω and some point C 

such that ∠ACO=90°, the locus of orthocenter of ABC as B moves along ω is 
a strophoid. 

 

On some conic section 𝒞 place points 

E, D such that line ED is a normal to 𝒞 
at D. Then choose points P, Q, on 𝒞 so 

that ∠PDQ=90°. 

  

According to Frégier's theorem3 , PQ 

intersects ED at some fixed point I.  

L is the point of intersection of lines 

PE and DQ. The polar line of L passes 

through I ⟹ L lies on the polar line 

(ℒ ) of  I with respect to 𝒞. 

 

 
3 See Frégier's Theorem on Wolfram MathWorld 

  

  
  

  

  

  

Diagram 9.1 

https://mathworld.wolfram.com/FregiersTheorem.html
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Now, “reversing” the order of construction, we can start by setting point L on 
some line ℒ, and drawing arbitrary points D and E. Point P is constructed by 

intersecting LE and the perpendicular to LD from D. 
 

We can see that the intersections of ℒ with the circle on diameter ED counts 
the number and the angle of asymptotes of  the locus of P with respect to L. 

Therefore, we can infer that the locus of P is a rectangular hyperbola, if the 
midpoint of ED lies on ℒ.  

Let Ω be a circle with center D passing through E. Applying inversion about  

Ω, P’ is the intersection of the perpendicular to DL’ at D and ○(L’ED), and the 

reflection of D about E lies on ℒ ’ ⟹ ∠OED=90°, where O is the center of ℒ ’. 

Let H be the orthocenter of L’DE. Then we can notice that HDP’E is a 
parallelogram ⟹ H is P’ reflected about midpoint of DE, M. 

Since the locus of P’ is an inversion of a rectangular hyperbola, the locus of P’ 

is a strophoid ⟹ the locus of H, orthocenter of L’ED, as L’ moves on ℒ ’ is a 
strophoid. 

  

  

  

  

  

    

    

  

  

  

 

Diagram 9.2 
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10. Conclusion 

 

An attentive reader might notice that in almost every definition of the 

strophoid presented in this article there is some “unnatural” restriction on 
the relative positions of the construction elements. If those restrictions are 

removed the loci generalize to circular rational cubics, or CRCs for short. 
CRCs still share some properties with strophoids, in particular being the 

inverses of conics and pedals of parabolas. However, there is no simple 

generalization to the primary definition of the strophoid, which makes 

working with CRCs geometrically not an easy task. 

PS: The green “apple like” curve on the title page is the pedal curve of the 
strophoid. No remarkable properties other than the shape are known. 
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