## ROMANIAN MATHEMATICAL MAGAZINE

JP. 551 Find the real numbers $x, y, z$ knowing that they meet the conditions:

$$
x+y+z=1 ; x y+(x+y)(z+1)=\frac{4}{3}
$$

Proposed by Gheorghe Molea - Romania

## Solution 1 by proposer

From $x+y+z=1$ it result successively:

$$
(x+y+z)^{2}=1 \Leftrightarrow x^{2}+y^{2}+z^{2}+2(x y+y z+z x)=1 \Leftrightarrow
$$

$x^{2}+y^{2}+z^{2}+2\left(\frac{4}{3}-x-y\right)=1$ (we have used also the second condition for the hypothesis) $\Leftrightarrow x^{2}+y^{2}+z^{2}-2 x-2 y=-\frac{5}{3}$
$\Leftrightarrow(x-1)^{2}+(y-1)^{2}+z^{2}=\frac{1}{3} \Leftrightarrow \frac{(x-1)^{2}+(y-1)^{2}+z^{2}}{3}=\frac{1}{9}$
From $x+y+z=1 \Rightarrow(x-1)+(y-1)+z=-1 \quad\left(^{* *}\right)$
It is obviously that: $(\boldsymbol{\alpha}-\boldsymbol{\beta})^{2}+(\boldsymbol{\alpha}-\gamma)^{2}+(\boldsymbol{\beta}-\gamma)^{2} \geq \mathbf{0}$
( $\forall$ ) $\alpha, \beta, \gamma$, with equality only if $\alpha=\beta=\gamma$, which becomes:

$$
3\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right) \geq(\alpha+\beta+\gamma)^{2}
$$

If in this last inequality, we make the substitutions:
$\alpha=x-1, \beta=y-1, \gamma=z$ and we consider the relationships (*) and (**) we obtain:
$1=9 \cdot \frac{1}{9}=3\left[(x-1)^{2}+(y-1)^{2}+z^{2}\right] \geq[(x-1)+(y-1)+z]^{2}=(-1)^{2}=1$, from

$$
x-1=y-1=z \stackrel{\text { notation }}{=} t \Rightarrow
$$

$x=t+1, y=t+1, z=t$, and from the first relationship of the hypothesis it follows:

$$
t=-\frac{1}{3}, \text { so } x=\frac{2}{3}, y=\frac{2}{3}, z=-\frac{1}{3}
$$

## Solution 2 by Marin Chirciu-Romania

$$
\text { Denoting } x+y=S \text { and } x y=P \text { we have }\left\{\begin{array} { c } 
{ S = 1 - z } \\
{ P + S ( z + 1 ) = \frac { 4 } { 3 } }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
S=1-z \\
P=\frac{1}{3}+z^{2}
\end{array}\right.\right.
$$

We form the equation of the second degree knowing the sum $S=1-z$ and the product

$$
P=\frac{1}{3}+z^{2}
$$

We obtain $t^{2}-S t+P=0 \Leftrightarrow t^{2}-(1-z) t+\frac{1}{3}+z^{2}=0 \Leftrightarrow$

$$
\Leftrightarrow 3 t^{2}-3(1-z) t+3 z^{2}+1=0, \text { with }
$$

## ROMANIAN MATHEMATICAL MAGAZINE

$$
\Delta=9(z-1)^{2}-12\left(3 z^{2}+1\right)=-27 t^{2}-18 z-3=-3(3 z+1)^{2}
$$

Because the solutions $\boldsymbol{x}, \boldsymbol{y}$ of the second-degree equation must be real we must meet the

$$
\text { condition } \Delta=-3(3 z+1)^{2} \geq 0 \Leftrightarrow z=\frac{-1}{3}
$$

Putting $z=\frac{-1}{3}$ in the equation $3 t^{2}-3(1-z) t+3 z^{2}+1=0$ we obtain

$$
9 t^{2}-12 t+4=0 \Leftrightarrow(3 t-2)^{2}=0 \Leftrightarrow t=\frac{2}{3}, \text { wherefrom } x=y=\frac{2}{3}
$$

We deduce that $(x, y, z)=\left(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}\right)$ is the unique real solution of the system.
Remark: The problem can be developed.
Let $\lambda>0$ fixed. Solve in real numbers $x, y, z$ the system:

$$
\left\{\begin{array}{c}
x+y+z=\lambda \\
x y+(x+y)(z+\lambda)=\frac{4 \lambda^{2}}{3}
\end{array}\right.
$$

Marin Chirciu

## Solution

Denoting $x+y=S$ and $x y=P$ we have $\left\{\begin{array}{c}S=\lambda-z \\ P+S(z+\lambda)=\frac{4 \lambda^{2}}{3}\end{array} \Leftrightarrow\left\{\begin{array}{c}S=\lambda-z \\ P=\frac{\lambda^{2}}{3}+z^{2}\end{array}\right.\right.$
Forming the equation of second degree knowing the sum $S=\lambda-z$ and the product $P=\frac{\lambda^{2}}{3}+z^{2}$.

We obtain $t^{2}-S t+P=0 \Leftrightarrow t^{2}-(\lambda-z) t+\frac{\lambda^{2}}{3}+z^{2}=0 \Leftrightarrow$ $\Leftrightarrow 3 t^{2}-3(\lambda-z) t+3 z^{2}+\lambda^{2}=0$ with

$$
\Delta=9(z-\lambda)^{2}-12\left(3 z^{2}+\lambda\right)^{2}=-27 t^{2}-18 \lambda z-3 \lambda^{2}=-3(3 z+\lambda)^{2}
$$

Because the solutions $x, y$ of the second-degree equation must be real we put the condition

$$
\Delta=-3(3 z+\lambda)^{2} \geq 0 \Leftrightarrow z=\frac{-\lambda}{3}
$$

Putting $z=\frac{-\lambda}{3}$ in equation $3 t^{2}-3(\lambda-z) t+3 z^{2}+\lambda^{2}=0$ we obtain
$9 t^{2}-12 \lambda t+4 \lambda^{2}=0 \Leftrightarrow(3 t-2 \lambda)^{2}=0 \Leftrightarrow t=\frac{2 \lambda}{3}$, wherefrom $x=y=\frac{2 \lambda}{3}$
We deduce that $(x, y, z)=\left(\frac{2 \lambda}{3}, \frac{2 \lambda}{3},-\frac{\lambda}{3}\right)$ is the unique real solution of the system.
Note: For $\lambda=1$ we obtain Problem JP. 551 from RMM Nr. 37 - Summer 2025.

