ROMANIAN MATHEMATICAL MAGAZINE

JP.555. In $\triangle ABC$ we know: $m(\widehat{A})=90^\circ, AD\perp BC, D\in (BC), DE\perp AB,$ $E\in (AB), DF\perp AC, F\in (AC), BE=a, CF=b, BC=c, a, b, c>0$ Prove that $c\leq 2\sqrt{a^2+b^2}$.

Proposed by Gheorghe Molea – Romania

Solution 1 by proposer

We denote: AD = h, AE = y, AF = x, BD = z, CD = t.

We have:

$$h^{2} = x^{2} + y^{2}$$

$$x^{2} = z^{2} - a^{2}$$

$$y^{2} = t^{2} - b^{2}$$

$$c = z + t$$

$$\Rightarrow h^2 = x^2 + y^2 = z^2 - a^2 + t^2 - b^2 = z^2 + t^2 - (a^2 + b^2) \quad (*)$$

But $c^2=(z+t)^2=z^2+t^2+2zt\Rightarrow c^2=z^2+t^2+2h^2\Rightarrow z^2+t^2=c^2-2h^2$ The relationship (*) becomes:

$$h^2 = c^2 - 2h^2 - (a^2 + b^2) \Rightarrow h^2 = \frac{c^2 - (a^2 + b^2)}{3}$$

But $h \le$ the median for $A \Rightarrow h^2 \le$ (the median from A) $^2 \Rightarrow \frac{c^2 - (a^2 + b^2)}{3} \le \left(\frac{c}{2}\right)^2$ $\Rightarrow 4c^2 - 4(a^2 + b^2) < 3c^2 \Rightarrow c^2 < 4(a^2 + b^2)$

ROMANIAN MATHEMATICAL MAGAZINE

$$\Rightarrow c \leq 2\sqrt{a^2 + b^2}$$

We have equality $\Leftrightarrow a = b \Leftrightarrow \Delta ABC$ is an right isoscel triangle.

Solution 2 by Marin Chirciu-Romania

We denote AF = x, $AE = y \Rightarrow DE = x$, DF = y.

Using the height theorem in right triangles ABD and ADC we obtain:

$$x^2 = ay, y^2 = bx \Rightarrow x^2 + y^2 = ay + bx$$

Using Pythagoras's theorem in $\triangle ABC \Rightarrow c^2(a+y)^2 + (b+x)^2$.

The inequality we must prove $c \leq 2\sqrt{a^2 + b^2} \Leftrightarrow c^2 \leq 4(a^2 + b^2) \Leftrightarrow$

$$\Leftrightarrow (a+y)^{2} + (b+x)^{2} \le 4(a^{2} + b^{2}) \Leftrightarrow a^{2} + y^{2} + 2ay + b^{2} + x^{2} + 2bx \le 4(a^{2} + b^{2})$$

$$\Leftrightarrow (x^{2} + y^{2}) + 2ay + 2bx \le 3(a^{2} + b^{2}) \Leftrightarrow \Leftrightarrow$$

$$\Leftrightarrow (ay + bx) + 2ay + 2bx \le 3(a^{2} + b^{2}) \Leftrightarrow$$

$$\Leftrightarrow 3(ay + bx) \le 3(a^{2} + b^{2}) \Leftrightarrow (ay + bx) \le (a^{2} + b^{2}) \Leftrightarrow$$

$$\Leftrightarrow (ay + bx)^{2} < (a^{2} + b^{2})(y^{2} + x^{2})$$

see CBS inequality, with equality for ax = by.