ROMANIAN MATHEMATICAL MAGAZINE

NAGEL'S AND GERGONNE'S CEVIANS - APPLICATIONS AND RESULTS

By Bogdan Fuștei-Romania

Extended Abstract

This paper is a new study in the field of geometry of triangle involving Nagel and Gergonne cevians. We obtain new identities and inequalities involving those two types of cevians using very well-known relationships in triangle geometry involving other elements of a triangle. After obtaining new identities involving those type of cevians, we obtain new inequalities using well known inequalitys both geometric and algebraic.
Those type of cevians as we will see are very close related with very well-known elements of triangle, which helps us to manipulate the expressions we obtain for a better form.
This paper is not the first written by me involving Nagel and Gergonne's cevians, but the results are new, we also use previous results in papers written by me with this topic for keeping fresh the interest of the readers, sometimes the expressions obtain are not friendly and they must be manipulated to obtain a better form, for using in future research. This paper like others was born from passion and curiosity for obscure elements which in school of math from Europe and USA was not studied so much. This topic is very rich and as we will see, we can obtain hundreds of results, even more.
I hope this topic will be researched in the future and new results will be obtained.

Keywords: Nagel's and Gergonne's cevians, geometric inequalities, identities in triangle

1. Research methodology

In this paper we will present applications and results with Nagel and Gergonne cevians. Results about those type of cevians are very rare in Europe and USA math school. We will present the new connections of those cevians with very well-known elements of a triangle. These new results will lead to obtain new geometric inequalities in triangle and inequalities related with already very well-known.

We consider triangle $A B C$ with sides $B C=a, A C=b, A B=c$ and $\mathrm{p}=\frac{1}{2}(a+b+c)$ circumradius \mathbf{R}, inradius r, l_{a}, l_{b}, l_{c} : the angle-bisectors; r_{a}, r_{b}, r_{c} the radii of excircles; m_{a}, m_{b}, m_{c} : the medians; h_{a}, h_{b}, h_{c} : the altitudes; n_{a}, g_{a} - cevians of Nagel and Gergonne from A to $B C$ (and analogs);

$$
\text { We know that: } g_{a}^{2}=(p-a)\left[p-\frac{(b-c)^{2}}{a}\right] \text { (and analogs) }[1 ; 3]
$$

$4 r_{a} r=4(p-b)(p-c)=a^{2}-(b-c)^{2}$ (and analogs), we will obtain:
$\mathrm{g}_{\mathrm{a}}^{2}-(\mathrm{p}-\mathrm{a})^{2}=\frac{4 \mathrm{r}_{\mathrm{a}} \mathrm{r}(\mathrm{p}-\mathrm{a})}{\mathrm{a}}$ (and analogs), but we know that $\mathrm{r}_{\mathrm{a}}=\frac{\mathrm{s}}{\mathrm{p}-\mathrm{a}}$ (and analogs),
$2 \mathrm{~S}=\mathrm{ah}_{\mathrm{a}}=2 \mathrm{pr}$ and after banal computations we obtain a new formula:
$\mathbf{g}_{\mathbf{a}}^{2}=(\mathbf{p}-\mathbf{a})^{2}+2 \mathbf{r h}_{\mathrm{a}}$ (and analogs)

$$
\begin{equation*}
\text { From } \mathrm{r}_{\mathrm{a}}=\frac{\mathrm{s}}{\mathrm{p}-\mathrm{a}} \text { (and analogs) } \rightarrow \frac{\mathrm{p}-\mathrm{a}}{\mathrm{r}}=\frac{\mathrm{p}}{\mathrm{r}_{\mathrm{a}}} \text { (and analogs) } \tag{1}
\end{equation*}
$$

From $S^{2}=p(p-a)(p-b)(p-c)$ (Heron) and $\operatorname{ctg} \frac{A}{2}=\sqrt{\frac{p(p-a)}{(p-b)(p-c)}}$ (and analogs) we will obtain $\operatorname{ctg} \frac{\mathrm{A}}{2}=\frac{\mathrm{p}-\mathrm{a}}{\mathrm{r}}=\frac{\mathrm{p}}{\mathrm{r}_{\mathrm{a}}}$ (and analogs); From (1) and this identity we obtain:

ROMANIAN MATHEMATICAL MAGAZINE

$\frac{\mathrm{g}_{\mathrm{a}}^{2}}{\mathrm{r}^{2}}=\operatorname{ctg}^{2} \frac{\mathrm{~A}}{2}+\frac{2 \mathrm{~h}_{\mathrm{a}}}{\mathrm{r}}$ (and analogs)
Now we use $\mathrm{p}^{2}=\mathrm{n}_{\mathrm{a}}^{2}+2 \mathrm{r}_{\mathrm{a}} \mathrm{h}_{\mathrm{a}}$ (and analogs) [2] and we obtain:
$\left(\frac{\mathrm{g}_{\mathrm{a}}}{\mathrm{r}}\right)^{2}=\left(\frac{\mathrm{n}_{\mathrm{a}}}{\mathrm{r}_{\mathrm{a}}}\right)^{2}+\frac{2 \mathrm{~h}_{\mathrm{a}}}{\mathrm{r}}+\frac{2 \mathrm{~h}_{\mathrm{a}}}{\mathrm{r}_{\mathrm{a}}}$ (and analogs)

$$
\begin{gather*}
\text { From } r_{a}=\frac{2 S}{2(p-a)}=\frac{a h_{a}}{b+c-a} \rightarrow \frac{r_{a}}{h_{a}}=\frac{a}{b+c-a} \rightarrow \frac{h_{a}}{r_{a}}=\frac{b+c}{a}-1 \text { (and analogs) } \tag{3}\\
a_{a}=2 p r=(a+b+c) r \rightarrow \frac{h_{a}}{r}=1+\frac{b+c}{a} \text { (and analogs) } \\
\frac{2 h_{a}}{r}+\frac{2 h_{a}}{r_{a}}=2\left(\frac{b+c}{a}-1+1+\frac{b+c}{a}\right)=4 \frac{b+c}{a} \text { (and analogs) }
\end{gather*}
$$

From (3) we obtain a new result:
$\left(\frac{g_{a}}{r}\right)^{2}=\left(\frac{n_{a}}{r_{a}}\right)^{2}+4 \frac{b+c}{a}$ (and analogs)
After summation we obtain new identities:

$$
\begin{align*}
& \frac{g_{a}^{2}+g_{b}^{2}+g_{c}^{2}}{r^{2}}=\sum \operatorname{ctg}^{2} \frac{A}{2}+\frac{2\left(\mathbf{h}_{a}+\mathbf{h}_{b}+\mathbf{h}_{c}\right)}{r} \tag{5}\\
& \frac{g_{a}^{2}+g_{b}^{2}+g_{c}^{2}}{r^{2}}=\sum\left(\frac{n_{a}}{r_{a}}\right)^{2}+4 \sum \frac{b+c}{a} \tag{6}
\end{align*}
$$

From $\operatorname{ctg}^{2} \frac{\mathrm{~A}}{2}=\left(\frac{\mathrm{p}}{\mathrm{r}_{\mathrm{a}}}\right)^{2} \frac{2}{2}=\frac{\mathrm{n}_{\mathrm{b}}^{2}+\mathrm{n}_{\mathrm{c}}^{2}+2 \mathrm{~h}_{\mathrm{b}} \mathrm{r}_{\mathrm{c}}+2 \mathrm{~h}_{\mathrm{c}} \mathrm{r}_{\mathrm{c}}}{2 \mathrm{r}_{\mathrm{a}}^{2}} \geq \frac{2\left(\mathrm{n}_{\mathrm{b}} \mathrm{n}_{\mathrm{c}}+\mathrm{h}_{\mathrm{b}} \mathrm{r}_{\mathrm{c}}+\mathrm{h}_{\mathrm{c}} \mathrm{r}_{\mathrm{c}}\right)}{2 \mathrm{r}_{\mathrm{a}}^{2}}$ we obtain:
$\boldsymbol{c t g}^{2} \frac{\mathbf{A}}{2} \geq \frac{\mathbf{n}_{\mathbf{b}} \mathbf{n}_{\mathbf{c}}+\mathbf{h}_{\mathbf{b}} \mathbf{r}_{\mathbf{c}}+\mathbf{h}_{\mathbf{c}} \mathbf{r}_{\mathbf{c}}}{\mathbf{r}_{\mathrm{a}}^{2}}$ (and analogs)
From (2) and (7) we obtain: $\left(\frac{g_{a}}{r}\right)^{2} \geq \frac{n_{b} n_{c}+h_{b} r_{c}+h_{c} r_{c}}{r_{a}^{2}}+\frac{2 h_{a}}{r}$ (and analogs)

$$
\begin{equation*}
\text { From } 2 \mathrm{rh}_{\mathrm{a}}=\mathrm{g}_{\mathrm{a}}^{2}-(\mathrm{p}-\mathrm{a})^{2}=\left(g_{a}+\mathrm{p}-\mathrm{a}\right)\left(\mathrm{g}_{\mathrm{a}}+\mathrm{a}-\mathrm{p}\right) \text { we obtain: } \tag{8}
\end{equation*}
$$

$\frac{h_{a}}{g_{a}+a-p}=\frac{g_{a}+p-a}{2 r}$ (and analogs), and after summation we obtain:
$\sum \frac{\mathbf{h}_{\mathbf{a}}}{\mathbf{g a}_{\mathrm{a}}+\mathbf{a}-\mathbf{p}}=\frac{\mathbf{g}_{\mathbf{a}}+\mathrm{g}_{\mathrm{b}}+\mathrm{g}_{\mathrm{c}}+\mathbf{p}}{2 \mathbf{r}}$
$\frac{h_{a}}{g_{a}+p-a}=\frac{g_{a}+a-p}{2 r}$ (and analogs), after summation we obtain:
$\sum \frac{h_{a}}{g_{a}+\mathbf{p}-\mathbf{a}}=\frac{\mathbf{g a}_{a}+\mathrm{g}_{\mathrm{b}}+\mathrm{g}_{\mathrm{c}}-\mathbf{p}}{2 \mathbf{r}}$
From [4] we have: $\frac{p}{r}=\sum \frac{n_{a}}{h_{a}}+2 \sum \frac{r_{a}}{n_{a}+p}$ and $\frac{3 \mathrm{p}}{\mathrm{r}}=\frac{\mathrm{n}_{\mathrm{a}}+\mathrm{n}_{\mathrm{b}}+\mathrm{n}_{\mathrm{c}}}{\mathrm{r}}+2 \sum \frac{2 \mathrm{r}_{\mathrm{a}}+\mathrm{h}_{\mathrm{a}}}{\mathrm{n}_{\mathrm{a}}+\mathrm{p}}$ and using (9) and (10) we obtain new results:
$2 \sum \frac{\mathbf{h}_{\mathbf{a}}}{\mathbf{g a}_{\mathrm{a}}+\mathbf{p}-\mathbf{a}}=\frac{\mathbf{g}_{\mathrm{a}}+\mathrm{g}_{\mathrm{b}}+\mathrm{g}_{\mathrm{c}}}{\mathbf{r}}-\left(\sum \frac{\mathbf{n}_{\mathrm{a}}}{\mathbf{h}_{\mathrm{a}}}+2 \sum \frac{\mathbf{r}_{\mathrm{a}}}{\mathbf{n}_{\mathrm{a}}+\mathbf{p}}\right)$
$2 \sum \frac{\mathbf{h}_{\mathbf{a}}}{\mathrm{ga}_{\mathrm{a}}+\mathbf{p}-\mathrm{a}}=\frac{\mathbf{g}_{\mathrm{a}}+\mathrm{g}_{\mathrm{b}}+\mathrm{g}_{\mathrm{c}}}{\mathbf{r}}-\left(\frac{\mathbf{n}_{\mathrm{a}}+\mathbf{n}_{\mathrm{b}}+\mathbf{n}_{\mathrm{c}}}{3 \mathbf{r}}+\frac{2}{3} \sum \frac{2 \mathbf{r a}_{\mathrm{a}}+\mathbf{h}_{a}}{\mathbf{n}_{\mathrm{a}}+\mathbf{p}}\right)$
$2 \sum \frac{h_{a}}{g_{a}+a-p}=\frac{g_{a}+g_{b}+g_{c}}{r}+\sum \frac{n_{a}}{h_{a}}+2 \sum \frac{r_{a}}{\mathbf{n}_{a}+\mathbf{p}}$
$2 \sum \frac{\mathbf{h a}_{\mathrm{a}}}{\mathrm{ga}_{\mathrm{a}}+\mathbf{a}-\mathbf{p}}=\frac{\mathbf{g a}_{\mathrm{a}}+\mathrm{g}_{\mathrm{b}}+\mathrm{g}_{\mathrm{c}}}{\mathbf{r}}+\frac{\mathbf{n}_{\mathrm{a}}+\mathbf{n}_{\mathrm{b}}+\mathbf{n}_{\mathrm{c}}}{3 \mathbf{r}}+\frac{2}{3} \sum \frac{2 \mathbf{r}_{\mathrm{a}}+\mathbf{h}_{\mathrm{a}}}{\mathbf{n}_{\mathrm{a}}+\mathbf{p}}$
From $\mathrm{p}^{2}=\mathrm{n}_{\mathrm{a}}^{2}+2 \mathrm{r}_{\mathrm{a}} \mathrm{h}_{\mathrm{a}}$ (and analogs) we have: $2 \mathrm{r}_{\mathrm{a}} \mathrm{h}_{\mathrm{a}}=\left(\mathrm{p}+\mathrm{n}_{\mathrm{a}}\right)\left(\mathrm{p}-\mathrm{n}_{\mathrm{a}}\right)$ and

ROMANIAN MATHEMATICAL MAGAZINE

$\mathrm{p}-\mathrm{n}_{\mathrm{a}}=\frac{2 \mathrm{r}_{\mathrm{a}} \mathrm{h}_{\mathrm{a}}}{\mathrm{p}+\mathrm{n}_{\mathrm{a}}} \rightarrow \frac{\mathrm{p}-\mathrm{n}_{\mathrm{a}}}{\mathrm{r}_{\mathrm{a}}}=\frac{2 \mathrm{~h}_{\mathrm{a}}}{\mathrm{p}+\mathrm{n}_{\mathrm{a}}}$ (and analogs) also we use $\sum \frac{1}{\mathrm{r}_{\mathrm{a}}}=\frac{1}{\mathrm{r}}$ we obtain:
$\frac{\mathbf{p}}{\mathbf{r}}=\sum \frac{\mathbf{n}_{\mathbf{a}}}{\mathbf{r}_{\mathbf{a}}}+\sum \frac{2 \mathbf{h}_{\mathbf{a}}}{\mathbf{p}+\mathbf{n}_{\mathbf{a}}}$
and using (9) and (10) we obtain:
$\mathbf{2} \sum \frac{\mathbf{h}_{\mathbf{a}}}{\mathbf{g}_{\mathrm{a}}+\mathbf{p}-\mathbf{a}}=\frac{\mathbf{g}_{\mathrm{a}}+\mathbf{g}_{b}+\mathrm{g}_{\mathrm{c}}}{\mathbf{r}}-\left(\sum \frac{\mathbf{n}_{\mathrm{a}}}{\mathbf{r a}_{\mathbf{a}}}+\sum \frac{2 \mathbf{h}_{\mathbf{a}}}{\mathbf{p}+\mathbf{n}_{\mathrm{a}}}\right)$
$\mathbf{2} \sum \frac{\mathbf{h}_{\mathbf{a}}}{\mathbf{g}_{\mathrm{a}}+\mathbf{a}-\mathbf{p}}=\frac{\mathbf{g}_{\mathrm{a}}+\mathrm{g}_{\mathrm{b}}+\mathrm{g}_{\mathrm{c}}}{\mathbf{r}}+\sum \frac{\mathbf{n}_{\mathrm{a}}}{\mathbf{r a}_{\mathrm{a}}}+\sum \frac{2 \mathbf{h}_{\mathbf{a}}}{\mathbf{p}+\mathbf{n}_{\mathrm{a}}}$
From (1) we obtain: $\left(\frac{g_{a}}{h_{a}}\right)^{2}=\left(\frac{p-a}{h_{a}}\right)^{2}+\frac{2 r}{h_{a}}$ (and analogs); We will use the well-known relations: $\sum \frac{1}{\mathrm{~h}_{\mathrm{a}}}=\frac{1}{\mathrm{r}} ; \mathrm{r}_{\mathrm{b}} \mathrm{r}_{\mathrm{c}}=\mathrm{p}(\mathrm{p}-\mathrm{a})$ (and analogs); $2 \mathrm{r}_{\mathrm{b}} \mathrm{r}_{\mathrm{c}}=\mathrm{h}_{\mathrm{a}}\left(\mathrm{r}_{\mathrm{b}}+\mathrm{r}_{\mathrm{c}}\right)$ (and analogs);
$\sum \mathrm{r}_{\mathrm{b}} \mathrm{r}_{\mathrm{c}}=\mathrm{p}^{2}$; and we have: $\frac{p-a}{\mathrm{~h}_{\mathrm{a}}}=\frac{\mathrm{r}_{\mathrm{b}}+\mathrm{r}_{\mathrm{c}}}{2 p}$ (and analogs) and after simple manipulation we

$$
\text { obtain: } \sum\left(\frac{\mathrm{p}-\mathrm{a}}{\mathrm{~h}_{\mathrm{a}}}\right)^{2}=\frac{1}{2}+\frac{\mathrm{r}_{\mathrm{a}}^{2}+\mathrm{r}_{\mathrm{b}}^{2}+\mathrm{r}_{\mathrm{c}}^{2}}{2 \mathrm{p}^{2}} \text { and } \sum\left(\frac{\mathrm{g}_{\mathrm{a}}}{\mathrm{~h}_{\mathrm{a}}}\right)^{2}=2+\sum\left(\frac{\mathrm{p}-\mathrm{a}}{\mathrm{~h}_{\mathrm{a}}}\right)^{2} .
$$

We will obtain:
$\sum\left(\frac{\mathrm{g}_{\mathrm{a}}}{\mathrm{h}_{\mathrm{a}}}\right)^{2}=\frac{5}{2}+\frac{\mathrm{ra}_{\mathrm{a}}^{2}+\mathrm{r}_{\mathrm{r}}^{2}+\mathrm{r}_{\mathrm{c}}^{2}}{2 \mathrm{p}^{2}}$
From (18) we can write: $\sum\left(\frac{\mathrm{ga}_{\mathrm{a}}}{\mathrm{h}_{\mathrm{a}}}\right)^{2}=\frac{5}{2}+\frac{\mathrm{r}_{\mathrm{a}}^{2}+\mathrm{r}_{\mathrm{b}}^{2}+\mathrm{r}_{\mathrm{c}}^{2}}{2 \mathrm{p}^{2}}+\frac{1}{2}-\frac{1}{2}=3+\frac{\mathrm{r}_{\mathrm{a}}^{2}+\mathrm{r}_{\mathrm{b}}^{2}+\mathrm{r}_{\mathrm{c}}^{2}-\mathrm{p}^{2}}{2 \mathrm{p}^{2}}$
Is easy to see $r_{a}^{2}+r_{b}^{2}+r_{c}^{2}-p^{2}=r_{a}^{2}+r_{b}^{2}+r_{c}^{2}-\sum r_{b} r_{c}$ and we obtain:
$\mathrm{r}_{\mathrm{a}}^{2}+\mathrm{r}_{\mathrm{b}}^{2}+\mathrm{r}_{\mathrm{c}}^{2}-\sum \mathrm{r}_{\mathrm{b}} \mathrm{r}_{\mathrm{c}}=\frac{1}{2}\left[\left(r_{a}-r_{b}\right)^{2}+\left(r_{c}-r_{b}\right)^{2}+\left(r_{c}-r_{a}\right)^{2}\right]$
$\sum\left(\frac{g_{a}}{h_{a}}\right)^{2}=3+\frac{1}{4 p^{2}}\left[\left(\mathbf{r}_{a}-r_{b}\right)^{2}+\left(\mathbf{r}_{c}-r_{b}\right)^{2}+\left(r_{c}-r_{a}\right)^{2}\right]$
From well-known relation: $\mathrm{r}_{\mathrm{a}} \mathrm{r}_{\mathrm{b}} \mathrm{r}_{\mathrm{c}}=\mathrm{Sp}=\mathrm{p}^{2} \mathrm{r}$ and $2 \mathrm{r}_{\mathrm{b}} \mathrm{r}_{\mathrm{c}}=\mathrm{h}_{\mathrm{a}}\left(\mathrm{r}_{\mathrm{b}}+\mathrm{r}_{\mathrm{c}}\right)$ (and analogs)

$$
\begin{gather*}
\rightarrow \frac{\mathrm{r}_{\mathrm{a}} \mathrm{~h}_{\mathrm{a}}\left(\mathrm{r}_{\mathrm{b}}+\mathrm{r}_{\mathrm{c}}\right)}{2 r}=\mathrm{p}^{2} \text { (and analogs). From } \frac{\mathrm{r}_{\mathrm{a}} \mathrm{~h}_{\mathrm{a}}\left(\mathrm{r}_{\mathrm{b}}+\mathrm{r}_{\mathrm{c}}\right)}{2 r}=\mathrm{p}^{2} \text { and } \mathrm{p}^{2}=\mathrm{n}_{\mathrm{a}}^{2}+2 \mathrm{r}_{\mathrm{a}} \mathrm{~h}_{\mathrm{a}} \text { (and } \\
\text { analogs) we obtain: } \tag{20}
\end{gather*}
$$

$n_{a}^{2}=r_{a} h_{a}\left(\frac{r_{b}+r_{c}}{2 r}-2\right)$ (and analogs)

$$
\begin{equation*}
\text { From } \mathrm{r}_{\mathrm{a}}+\mathrm{r}_{\mathrm{b}}+\mathrm{r}_{\mathrm{c}}=4 R+r \text { and (20) we obtain: } \tag{21}
\end{equation*}
$$

$\sum \frac{\mathrm{n}_{\mathrm{a}}^{2}}{\mathrm{r}_{\mathrm{a}} \mathrm{h}_{\mathrm{a}}}=\frac{4 R}{r}-5$
From $\mathrm{h}_{\mathrm{a}}=\left(1+\frac{b+c}{a}\right) \mathrm{r}$ (and analogs) and $\frac{\mathrm{h}_{\mathrm{a}}}{\mathrm{r}_{\mathrm{a}}}=\frac{\mathrm{b}+\mathrm{c}}{\mathrm{a}}-1$ (and analogs) we obtain $\mathrm{r}_{\mathrm{a}} \mathrm{h}_{\mathrm{a}}=\left(2 \mathrm{r}_{\mathrm{a}}+\mathrm{h}_{\mathrm{a}}\right) r$ (and analogs). From $\mathrm{r}_{\mathrm{a}} \mathrm{h}_{\mathrm{a}}=\left(2 \mathrm{r}_{\mathrm{a}}+\mathrm{h}_{\mathrm{a}}\right) r$ (and analogs) and (20) we obtain:
$\mathbf{n}_{\mathrm{a}}^{2}=\left(2 \mathrm{r}_{\mathrm{a}}+\mathrm{h}_{\mathrm{a}}\right)\left(\frac{\mathbf{r}_{\mathrm{b}}+\mathrm{r}_{\mathrm{c}}}{2}-\mathbf{2 r}\right)$ (and analogs)
From $m_{a} l_{a} \geq p(p-a)=r_{b} r_{c}$ (Panaitopol inequality) [5] and $2 r_{b} r_{c}=h_{a}\left(r_{b}+r_{c}\right)$ (and analogs) we obtain $\frac{m_{a} l_{a}}{h_{a}} \geq \frac{r_{b}+r_{c}}{2}$ (and analogs) and from (22) we obtain:
$\left(2 r_{a}+h_{a}\right)\left(\frac{m_{a} l_{a}}{h_{a}}-2 r\right) \geq n_{a}^{2}$ (and analogs)

ROMANIAN MATHEMATICAL MAGAZINE

We will use now well-known inequality $\sqrt{\frac{\mathrm{R}}{2 r}} \geq \frac{l_{\mathrm{a}}}{\mathrm{h}_{\mathrm{a}}}$ (and analogs) (for proof see [6]) and using (23) we obtain:

$$
\begin{equation*}
\left(2 r_{a}+h_{a}\right)\left(m_{a} \sqrt{\frac{R}{2 r}}-2 r\right) \geq n_{a}^{2} \text { (and analogs) } \tag{24}
\end{equation*}
$$

From (23) and (24) after summation we obtain two new inequalities:

$$
\begin{align*}
& \sum\left(2 r_{a}+h_{a}\right)\left(\frac{m_{a} l_{a}}{h_{a}}-2 r\right) \geq \sum n_{a}^{2} \tag{25}\\
& \sum\left(2 r_{a}+h_{a}\right)\left(m_{a} \sqrt{\frac{R}{2 r}}-2 r\right) \geq \sum n_{a}^{2} \tag{26}
\end{align*}
$$

From (1) and $a b c=4 R S ; a^{2}+b^{2}+c^{2}=2\left(p^{2}-4 R r-r^{2}\right)$;
$a^{3}+b^{3}+c^{3}=2 p\left(\mathrm{p}^{2}-6 \mathrm{Rr}-3 \mathrm{r}^{2}\right)$ and $2 \mathrm{~S}=\mathrm{ah}_{\mathrm{a}}=2 \mathrm{pr}$ (and analogs) we have:
$\sum \frac{\mathrm{g}_{\mathrm{a}}^{2}}{\mathbf{h}_{\mathrm{a}}}=6 r+\sum \frac{(\boldsymbol{p}-a)^{2}}{\mathbf{h}_{\mathrm{a}}}$ and $\sum \frac{\mathrm{g}_{\mathrm{a}}^{2}}{\mathbf{h}_{\mathrm{a}}}=2 \mathrm{R}+5 \mathrm{r}$
From (27) and Bergstrom inequality: if x_{k}-real numbers and $a_{k}>0$,
$\mathrm{k} \in\{1,2, \ldots, \mathrm{n}\}$ then $\frac{x_{1}^{2}}{a_{1}}+\frac{x_{2}^{2}}{a_{2}}+\cdots+\frac{x_{n}^{2}}{a_{n}} \geq \frac{\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{2}}{a_{1}+a_{2}+\cdots+a_{n}}$ with equality only if $\frac{x_{1}}{a_{1}}=\frac{x_{2}}{a_{2}}=\cdots=\frac{x_{n}}{a_{n}}$, we obtain: $2 \mathrm{R}+5 \mathrm{r} \geq \frac{\left(\mathrm{g}_{\mathrm{a}}+\mathrm{g}_{\mathrm{b}}+\mathrm{g}_{\mathrm{c}}\right)^{2}}{\mathrm{~h}_{\mathrm{a}}+\mathrm{h}_{\mathrm{b}}+\mathrm{h}_{\mathrm{c}}}$ wich can be written as:

$$
\begin{equation*}
\sqrt{(2 R+5 r)\left(h_{a}+h_{b}+h_{c}\right)} \geq g_{a}+g_{b}+g_{c} \tag{28}
\end{equation*}
$$

From $\mathrm{g}_{\mathrm{a}} \geq \mathrm{h}_{\mathrm{a}}$ (and analogs) and (28) we obtain:
$2 R+5 r \geq g_{a}+g_{b}+g_{c}$
From (28) and (9), (10) we obtain two new inequalitys:
$\sum \frac{\mathbf{h}_{\mathbf{a}}}{\mathbf{g a}_{\mathrm{a}}+\mathbf{a}-\mathbf{p}} \leq \frac{\boldsymbol{p}+\sqrt{(2 R+5 \mathbf{r})\left(\mathbf{h}_{\mathrm{a}}+\mathbf{h}_{\mathrm{b}}+\mathbf{h}_{\mathrm{c}}\right)}}{2 \boldsymbol{r}}$
$\sum \frac{\mathbf{h}_{\mathbf{a}}}{\mathbf{g a}_{\mathrm{a}}+\mathbf{p}-\mathbf{a}} \leq \frac{-\boldsymbol{p}+\sqrt{(2 \mathrm{R}+5 \mathbf{r})\left(\mathbf{h}_{\mathbf{a}}+\mathbf{h}_{\mathbf{b}}+\mathbf{h}_{\mathbf{c}}\right)}}{2 r}$
From (4), (8) and (28) we obtain another two inequalitys:
$\sum \sqrt{\left(\frac{n_{a}}{r_{a}}\right)^{2}+4 \frac{b+c}{a}} \leq \frac{\sqrt{(2 R+5 r)\left(h_{a}+h_{b}+h_{c}\right)}}{r}$
$\sum \sqrt{\frac{\mathbf{n}_{\mathbf{b}} \mathbf{n}_{\mathbf{c}}+\mathbf{h}_{\mathbf{b}} \mathbf{r}_{\mathrm{c}}+\mathbf{h}_{\mathbf{c}} \mathbf{r}_{\mathrm{c}}}{\mathbf{r}_{\mathrm{a}}^{2}}+\frac{2 \mathbf{h}_{\mathrm{a}}}{\mathbf{r}}} \leq \frac{\sqrt{(2 \mathbf{R}+5 r)\left(\mathbf{h}_{\mathbf{a}}+\mathbf{h}_{\mathrm{b}}+\mathbf{h}_{\mathrm{c}}\right)}}{r}$
We use now Wolstenholme's inequality: if $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are real numbers, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ angles of triangle $A B C$ then we have:

$$
\begin{gather*}
x^{2}+y^{2}+z^{2} \geq 2 x y \cos C+2 y z \cos A+2 z x \cos B \text { with equality if and only if: } \\
\frac{x}{\sin A}=\frac{y}{\sin B}=\frac{z}{\sin C}[7] \text { and (25) and (26) and we obtain: } \\
\sum\left(2 \mathbf{r}_{\mathbf{a}}+\mathbf{h}_{\mathrm{a}}\right)\left(\frac{\mathbf{m}_{\mathrm{a}} \mathbf{l}_{\mathrm{a}}}{\mathbf{h}_{\mathrm{a}}}-\mathbf{2 r}\right) \geq \mathbf{2} \mathbf{n}_{\mathrm{b}} \mathbf{n}_{\mathrm{c}} \cos \mathbf{A}+\mathbf{2} \mathbf{n}_{\mathrm{a}} \mathbf{n}_{\mathrm{c}} \cos B+\mathbf{2} \mathbf{n}_{\mathrm{a}} \mathbf{n}_{\mathrm{b}} \cos C \tag{34}\\
\sum\left(\mathbf{2} \mathbf{r}_{\mathrm{a}}+\mathbf{h}_{\mathrm{a}}\right)\left(\mathbf{m}_{\mathrm{a}} \sqrt{\frac{\mathbf{R}}{2 r}}-\mathbf{2 r}\right) \geq \mathbf{2} \mathbf{n}_{\mathbf{b}} \mathbf{n}_{\mathbf{c}} \cos \mathbf{A}+\mathbf{2} \mathbf{n}_{\boldsymbol{a}} \boldsymbol{n}_{\boldsymbol{c}} \cos B+\mathbf{2} \boldsymbol{n}_{\boldsymbol{a}} \boldsymbol{n}_{\boldsymbol{b}} \cos C \tag{35}
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

Using Wolstenholme's inequality and $\frac{3 p}{r}=\frac{n_{a}+n_{b}+n_{c}}{r}+2 \sum \frac{2 r_{a}+h_{a}}{n_{a}+p}$ we obtain:
$3 \mathrm{p} \geq 2 \sum \cos A \sqrt{\mathbf{n}_{\mathrm{b}} \mathbf{n}_{\mathbf{c}}}+2 \mathrm{r} \sum \frac{2 \mathbf{r a}_{\mathrm{a}}+\mathbf{h}_{\mathrm{a}}}{\mathbf{n}_{\mathrm{a}}+\mathbf{p}}$
From $\frac{p}{r}=\sum \frac{n_{a}}{h_{a}}+2 \sum \frac{r_{a}}{n_{a}+p}$ and Wolstenholme's inequality we obtain:
$\frac{\mathbf{p}}{\mathrm{r}} \geq 2 \sum \cos A \sqrt{\frac{n_{b} \mathbf{n}_{\mathbf{c}}}{\mathbf{h}_{b_{c}}}}+2 \sum \frac{\mathbf{r}_{\mathrm{a}}}{\mathbf{n}_{\mathrm{a}}+\mathbf{p}}$
From (6) and Wolstenholme's inequality we obtain:
$\frac{\mathrm{ga}_{\mathrm{a}}^{2}+\mathrm{g}_{\mathrm{b}}^{2}+\mathrm{g}_{\mathrm{c}}^{2}}{\mathbf{r}^{2}} \geq \mathbf{2} \sum \frac{\mathbf{n}_{\mathrm{b}} \mathbf{n}_{\mathrm{c}}}{\mathbf{r}_{\mathrm{b}} \mathbf{r}_{\mathrm{c}}} \cos A+4 \sum \frac{\mathbf{b}+\mathbf{c}}{\mathrm{a}}$
$\sum\left(\frac{\mathbf{n}_{\mathrm{a}}}{\mathrm{r}_{\mathrm{a}}}\right)^{2}+4 \sum \frac{\mathrm{~b}+\mathrm{c}}{\mathrm{a}} \geq \mathbf{2} \sum \frac{\mathrm{g}_{\mathrm{b}} \mathrm{g}_{\mathrm{c}}}{\mathrm{r}^{2}} \cos A$
From (15) and Wolstenholme's inequality we obtain:
$\frac{\mathrm{p}}{\mathrm{r}} \geq 2 \sum \cos A \sqrt{\frac{\mathbf{n}_{\mathrm{b}} \mathbf{n}_{\mathbf{c}}}{\mathrm{r}_{\mathrm{b}} \mathbf{r}_{\mathrm{c}}}}+2 \sum \frac{\mathrm{~h}_{\mathrm{a}}}{\mathbf{n}_{\mathrm{a}}+\mathrm{p}}$
From (27) and Wolstenholme's inequality we obtain:
$\mathbf{2 R}+\mathbf{5 r} \geq \mathbf{2} \sum \frac{\mathbf{g b}_{\mathrm{b}}}{\sqrt{\mathbf{h}_{\mathrm{b}} \mathbf{h}_{\mathbf{c}}}} \boldsymbol{\operatorname { c o s }} A$
From (18) and Wolstenholme's inequality we obtain:
$\frac{5}{2}+\frac{\mathbf{r}_{\mathrm{a}}^{2}+\mathrm{r}_{\mathrm{b}}^{2}+\mathrm{r}_{\mathrm{c}}^{2}}{2 \mathbf{p}^{2}} \geq 2 \sum \frac{\mathrm{~g}_{\mathrm{b}} \mathrm{g}_{\mathrm{c}}}{\mathbf{h}_{\mathrm{b}} \mathbf{h}_{\mathrm{c}}} \cos A$
The last result presented is the following:
$\mathbf{l}_{\mathrm{a}} \leq \mathbf{m}_{\mathrm{a}} \leq \mathbf{p}_{\mathrm{a}} \leq \mathbf{n}_{\mathrm{a}}$ (and analogs)
p_{a}-Spieker cevian from A to BC
For the demonstration of this result, we will use this theorem: Points I, G, $\mathrm{S}_{\mathrm{P}}, \mathrm{N}_{\mathrm{a}}$ are colinear, line that passes through these points is called Nagel line.[8]

I (incenter), G (triangle centroid), S_{P} (Spieker center), N_{a} (Nagel point)

Figure 1.

ROMANIAN MATHEMATICAL MAGAZINE

2. Conclusion

The field of geometry is full of surprises and we can find new connections between well known elements of a triangle.

References:

[1]. Fuștei B., 2019, About Nagel and Gergonne's Cevians
https://www.ssmrmh.ro/2019/07/19/about-nagel-and-gergonnes-cevians/
[2]. Fuștei B. - About Nagel and Gergonne's Cevians (II)
https://www.ssmrmh.ro/2019/10/24/about-nagels-and-gergonnes-cevians/
[3]. Fuștei B. - About Nagel and Gergonne’s Cevians (III)
https://www.ssmrmh.ro/2020/02/16/about-nagels-and-gergonnes-cevians-iii/
[4]. Fuștei B. - About Nagel and Gergonne's Cevians (V)
https://www.ssmrmh.ro/2020/06/07/about-nagels-and-gergonnes-cevians-v/
[5]. Fuștei B. - The avalanche of geometric inequalities
https://www.ssmrmh.ro/2023/04/19/the-avalanche-of-geometric-inequalities/
[6]. Wolstenholme J. - A Book of Mathematical Problems, Cambridge, London, 1867.
[7]. Barbu C. - Puncte, drepte şi cercuri remarcabile asociate unui triunghi (2019) Pag. 220

