ROMANIAN MATHEMATICAL MAGAZINE

SP. 543 Let be $f:[0,1] \rightarrow[0,20] ; f(x)=2 \cdot 3^{x}+4 \cdot 5^{x}-6$. Find:

$$
\Omega=\int_{0}^{20} f^{-1}(x) d x
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by proposer

$$
\begin{gathered}
f^{\prime}(x)=2 \cdot 3^{x} \log 3+4 \cdot 5^{x} \log 5>0 \\
f \text { strictly increasing } \\
f(0)=2+4-6=0 ; f(1)=6+20-6=20 \\
f \text { continuous } \Rightarrow f([0,1])=[0,20] \\
\text { By Young's theorem: } \\
\int_{0}^{1} f(x) d x+\int_{0}^{20} f^{-1}(x) d x=1 \cdot 20 \\
\int_{0}^{1}\left(2 \cdot 3^{x}+4 \cdot 5^{x}-6\right) d x+\int_{0}^{20} f^{-1}(x) d x=20 \\
\Omega=\int_{0}^{20} f^{-1}(x) d x=20-2 \int_{0}^{1} 3^{x} d x-4 \int_{0}^{1} 5^{x} d x+6(1-0)= \\
=20-2\left(\frac{3^{1}}{\log 3}-\frac{3^{0}}{\log 3}\right)-4\left(\frac{5^{1}}{\log 5}-\frac{5^{0}}{\log 5}\right)+6=26-\frac{4}{\log 3}-\frac{16}{\log 5}
\end{gathered}
$$

Solution 2 by Marin Chirciu-Romania

Using Young equality:

If $f:[0, a] \rightarrow[0, b]$ is a derivable function strictly increasing with $f(0)=0$ and $f(a)=b$, then the following equality holds $\int_{0}^{a} f(x) d x+\int_{0}^{b} f^{-1}(x) d x=a b$.
In our case $f:[0,1] \rightarrow[0,20], f(x)=2 \cdot 3^{x}+4 \cdot 5^{x}-6$ is a derivable function, strictly increasing (exponentials with a superunit base) with $f(0)=0$ and $f(1)=20$.

Applying Young equality we obtain:

$$
\int_{0}^{1} f(x) d x+\int_{0}^{20} f^{-1}(x) d x=20
$$

We have $\int_{0}^{1} f(x) d x=\int_{0}^{1}\left(2 \cdot 3^{x}+4 \cdot 5^{x}-6\right) d x=\left.\left(2 \cdot \frac{3^{x}}{\ln 3}+4 \cdot \frac{5^{x}}{\ln 5}-6 x\right)\right|_{0} ^{1}=$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{aligned}
& =\left(2 \cdot \frac{3}{\ln 3}+4 \cdot \frac{5}{\ln 5}-6\right)-\left(2 \cdot \frac{1}{\ln 3}+4 \cdot \frac{1}{\ln 5}\right)=\frac{4}{\ln 3}+\frac{16}{\ln 5}-6 \\
& \text { We obtain: } \\
& \Omega=\int_{0}^{20} f^{-1}(x) d x=20-\left(\frac{4}{\ln 3}+\frac{16}{\ln 5}-6\right)=26-\frac{4}{\ln 3}-\frac{16}{\ln 5}
\end{aligned}
$$

Remark: In the same way.
Let be $f:[0,1] \rightarrow[0,25], f(x)=3 \cdot 4^{x}+4 \cdot 5^{x}-7$. Find:

$$
\Omega=\int_{0}^{25} f^{-1}(x) d x
$$

Marin Chirciu
Solution: Using Young equality:
If $f:[0, a] \rightarrow[0, b]$ is a derivable function, strictly increasing with $f(0)=0$ and $f(a)=b$, then the following equality $\int_{0}^{a} f(x) d x+\int_{0}^{b} f^{-1}(x) d x=a b$.
In our case $f:[0,1] \rightarrow[0,25], f(x)=3 \cdot 4^{x}+4 \cdot 5^{x}-7$ is a derivable function, strictly increasing (exponentials with a superunit base), with $f(0)=0$ and $f(1)=25$.

Applying Young's equality we obtain:

$$
\int_{0}^{1} f(x) d x+\int_{0}^{25} f^{-1}(x) d x=25
$$

We have $\int_{0}^{1} f(x) d x=\int_{0}^{1}\left(3 \cdot 4^{x}+4 \cdot 5^{x}-7\right) d x=\left.\left(3 \cdot \frac{4^{x}}{\ln 4}+4 \cdot \frac{5^{x}}{\ln 5}-6 x\right)\right|_{0} ^{1}=$

$$
=\left(3 \cdot \frac{4}{\ln 4}+4 \cdot \frac{5}{\ln 5}-7\right)-\left(3 \cdot \frac{1}{\ln 4}+4 \cdot \frac{1}{\ln 5}\right)=\frac{9}{\ln 3}+\frac{16}{\ln 5}-7 .
$$

We obtain:

$$
\Omega=\int_{0}^{20} f^{-1}(x) d x=25-\left(\frac{9}{\ln 4}+\frac{16}{\ln 5}-7\right)=32-\frac{9}{\ln 4}-\frac{16}{\ln 5} .
$$

