The Convergence of Summation $\sum_{n=1}^{\infty} \frac{1}{4^{n}}\binom{2 n}{n}$

Ivan Hadinata
Department of Mathematics, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Yogyakarta, Indonesia ivanhadinata2005@mail.ugm.ac.id

Abstract

Through this math note, we intend to check whether the series $\sum_{n=1}^{\infty} \frac{1}{4^{n}}\binom{2 n}{n}$ converges or diverges. The main method used to show its convergence is applying a special case of Wallis Trigonometric Integral. The steps direct us to the conclusion that the series $\sum_{n=1}^{\infty} \frac{1}{4^{n}}\binom{2 n}{n}$ is properly divergent.

Key words and Phrases: Infinite series, double factorial, Wallis integral.

1 Preliminary

The inspiration comes when we create a rational fraction $\frac{A}{B}$ where $A=\binom{2 n}{n}$ is the $\mathrm{n}^{\text {th }}$ central binomial coefficient and B is the total by summing up all of $\binom{2 n}{k}$ for $k=0,1,2, \cdots, 2 n$. Then we get the numerical form of $\frac{A}{B}$ as

$$
\frac{\binom{2 n}{n}}{\sum_{k=0}^{2 n}\binom{2 n}{k}} \quad \text { or } \quad \frac{\binom{2 n}{n}}{4^{n}} .
$$

After that, we suppose that if $b(n)=\frac{\binom{2 n}{n}}{4^{n}}$ for all $n \in \mathbb{N}_{0}$, so a question arises: does the series $\sum_{n=1}^{\infty} b(n)=b(1)+b(2)+b(3)+\cdots$ converge or not?

Romanian Mathematical Magazine

Web: http://www.ssmrmh.ro/
The Author: This article is published with open access.

Definition 1.1. Let $(b(n))_{n \in \mathbb{N}_{0}}=(b(0), b(1), b(2), b(3), \cdots \cdots)$ be an infinite sequence such that $b(n)=\frac{1}{4^{n}}\binom{2 n}{n}$ for all $n \in \mathbb{N}_{0}$.

Definition 1.2 (Double Factorial Numbers). A double factorial number n!!, where $n \in \mathbb{N}_{0}$, is defined by an infinite sequence $(a(n))_{n \in \mathbb{N}_{0}}=(a(0), a(1), a(2), a(3), \cdots \cdots)$ where $n!!=a(n), \forall n \in \mathbb{N}_{0} ; a(0)=a(1)=1 ;$ and $a(n+2)=(n+2) a(n), \forall n \in \mathbb{N}_{0}$. Mathematically,

$$
n!!= \begin{cases}1 & \text { if } n=0 . \\ \prod_{k=0}^{\frac{n-2}{2}}(n-2 k) & \text { if } n \text { is an even positive integer. } \\ \prod_{k=0}^{\frac{n-1}{2}}(n-2 k) & \text { if } n \text { is an odd positive integer. }\end{cases}
$$

Lemma 1.3 (Formula of $(b(n))_{n \in \mathbb{N}_{0}}$ in term of double factorial numbers).

$$
b(n)= \begin{cases}1 & \text { if } n=0 \\ \frac{(2 n-1)!!}{(2 n)!!} & \text { if } n \in \mathbb{N}\end{cases}
$$

Proof. It is clear that $b(n) \in \mathbb{R}^{+}$for all $n \in \mathbb{N}_{0}$, by Definition 1.1. It is also obvious that $b(0)=1$. Since $b(0)=1$ and $b(1)=\frac{1}{2}\binom{2}{1}=\frac{1}{2}$ then $\frac{b(1)}{b(0)}=\frac{1}{2}$. We also have that

$$
\frac{b(n+1)}{b(n)}=\frac{\frac{1}{4^{n+1}}\binom{2 n+2}{n+1}}{\frac{1}{4^{n}}\binom{2 n}{n}}=\frac{2 n+1}{2 n+2}, \forall n \in \mathbb{N} .
$$

In conclusion, $\frac{b(n+1)}{b(n)}=\frac{2 n+1}{2 n+2}$ for every $n \in \mathbb{N}_{0}$. Now, observe that

$$
b(n+1)=\prod_{k=0}^{n} \frac{b(k+1)}{b(k)}=\prod_{k=0}^{n} \frac{2 k+1}{2 k+2}=\frac{(2 n+1)!!}{(2 n+2)!!}, \forall n \in \mathbb{N}_{0}
$$

Equivalently, $b(n)=\frac{(2 n-1)!!}{(2 n)!!}$ for every $n \in \mathbb{N}$. Thus, the result follows.

2 Wallis Integral of Sine Function of an Even Positive Integer Power

Theorem 2.1. For all even positive integers n, the following equation holds:

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x=\frac{\pi}{2} \cdot \frac{(n-1)!!}{n!!}
$$

Proof. Using integral by part gives us

$$
\begin{aligned}
\int \sin ^{n} x d x & =\int \sin ^{n-1} x \cdot \sin x d x \\
& =-\sin ^{n-1} x \cdot \cos x+(n-1) \int \sin ^{n-2} x \cdot \cos ^{2} x d x \\
& =-\sin ^{n-1} x \cdot \cos x+(n-1) \int \sin ^{n-2} x \cdot\left(1-\sin ^{2} x\right) d x \\
& =-\sin ^{n-1} x \cdot \cos x+(n-1) \int \sin ^{n-2} x d x-(n-1) \int \sin ^{n} x d x
\end{aligned}
$$

then

$$
\begin{align*}
n \int \sin ^{n} x d x & =-\sin ^{n-1} x \cdot \cos x+(n-1) \int \sin ^{n-2} x d x \\
\int \sin ^{n} x d x & =\frac{-\sin ^{n-1} x \cdot \cos x}{n}+\frac{n-1}{n} \int \sin ^{n-2} x d x \tag{1}
\end{align*}
$$

Suppose that $I_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x$ for all $n \in \mathbb{N}_{0}$. So, we have $I_{0}=\frac{\pi}{2}$.
If we set $x=0$ and $x=\frac{\pi}{2}$ respectively as the lower and upper limit of integrals in Equation (1), then we obtain

$$
I_{n}=\left(\frac{n-1}{n}\right) I_{n-2}, \quad \forall n \in \mathbb{N}, n \geq 2
$$

Consequently, for every even $n \in \mathbb{N}$,

$$
I_{n}=I_{0} \cdot \prod_{k=0}^{\frac{n-2}{2}}\left(\frac{n-1-2 k}{n-2 k}\right)=\frac{\pi}{2} \cdot \frac{(n-1)!!}{n!!}
$$

The result is shown.

3 Main Results

Remind that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{4^{n}}\binom{2 n}{n}=\sum_{n=1}^{\infty} b(n)=\sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} \tag{2}
\end{equation*}
$$

By Theorem 2.1,

$$
\begin{equation*}
\frac{(2 n-1)!!}{(2 n)!!}=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \sin ^{2 n} x d x, \forall n \in \mathbb{N} \tag{3}
\end{equation*}
$$

Continuing the Equation (2) with (3) implies the following:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{4^{n}}\binom{2 n}{n}=\sum_{n=1}^{\infty} \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \sin ^{2 n} x d x & =\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}}\left(\sum_{n=1}^{\infty} \sin ^{2 n} x d x\right) \\
& =\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{1-\sin ^{2} x} d x \\
& =\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{\cos ^{2} x} d x \\
& =\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}}\left(\sec ^{2} x-1\right) d x \\
& =\frac{2}{\pi}[\tan x-x]_{0}^{\frac{\pi}{2}}=\frac{2}{\pi} \cdot \infty=\infty
\end{aligned}
$$

From the result, $\sum_{n=1}^{\infty} \frac{1}{4^{n}}\binom{2 n}{n}$ diverges. Since $\sum_{n=1}^{\infty} \frac{1}{4^{n}}\binom{2 n}{n}$ goes to $+\infty$, so this series is properly divergent.

References

[1] Arfken, G. (1985). Mathematical Methods for Physicists, 3rd edition. Academic Press, pp. 544-545. ISBN: 0-12-059820-5.
[2] Meserve, B. E. (1948). Double Factorials. The American Mathematical Monthly, 55(7), 425-426. https://doi.org/10.2307/2306136

