
 
UP.554 We consider the equation: (𝟏 + 𝒊𝒛)𝟐𝒏 = 𝒊 ⋅ (𝟏 + 𝒛𝟐)𝒏, where 𝒏 ≥ 𝟏 

natural number and 𝒊𝟐 = −𝟏. 

a. Prove that the complex number 𝒊 is a solution of the equation for any 𝒏 ≥ 𝟏. 

b. Solve the equation in the case 𝒏 = 𝟏 and in one of the cases 𝒏 = 𝟐 or 𝒏 = 𝟑. 

c. Find the solution of the equation in the general case 𝒏 ∈ ℕ∗ 

Proposed by Adalbert Kovacs – Romania  

Solution 1 by proposer 

1. a. By replacing we can check that 𝒛 = 𝒊 is a solution of the equation. 

1.b. Case 𝒏 = 𝟏:  We have the equation: (𝟏 + 𝒊𝒛)𝟐 = 𝒊 ⋅ (𝟏 + 𝒛𝟐), with the roots 𝒊 and 𝟏. 

Case 𝒏 = 𝟐. We use the decomposition: (𝟏 + 𝒛𝟐) = (𝟏 + 𝒊𝒛)(𝟏 − 𝒊𝒛) the given equation 

becomes: (𝟏 + 𝒊𝒛)𝟒 = 𝒊(𝟏 + 𝒊𝒛)𝟐 ⋅ (𝟏 − 𝒊𝒛)𝟐 ⇔ (𝟏 + 𝒊𝒛)𝟐 ⋅ [(𝟏 + 𝒊𝒛)𝟐 − 𝒊 ⋅ (𝟏 − 𝒊𝒛)𝟐] = 𝟎 

⇔ (𝟏 + 𝒊𝒛)𝟐 = 𝟎 and (𝟏 + 𝒊𝒛)𝟐 = 𝒊 ⋅ (𝟏 − 𝒊𝒛)𝟐 = 𝟎 

The first equation has the double root: 𝒊 

The second equation: 𝟏 + 𝟐𝒊𝒛 − 𝒛𝟐 − 𝒊 − 𝟐𝒛 + 𝒊𝒛𝟐 = 𝟎 ⇔ 

⇔ (𝟏 − 𝒊)𝒛𝟐 + 𝟐(𝟏 − 𝒊)𝒛 − (𝟏 − 𝒊) = 𝟎 ⇔ 

⇔ 𝒛𝟐 + 𝟐𝒛 − 𝟏 = 𝟎, with the roots: −𝟏 + √𝟐 and −𝟏 − √𝟐. 

Case 𝒏 = 𝟑: We have the equation: (𝟏 + 𝒊 ⋅ 𝒛)𝟔 = 𝒊 ⋅ (𝟏 + 𝒛𝟐)𝟑. 

Using the decomposition: (𝟏 + 𝒛𝟐) = (𝟏 + 𝒊𝒛)(𝟏 − 𝒊𝒛) the equation becomes: 

(𝟏 + 𝒊𝒛)𝟔 = 𝒊(𝟏 + 𝒊𝒛)𝟑 ⋅ (𝟏 − 𝒊𝒛)𝟑 

⇔ (𝟏 + 𝒊𝒛)𝟑 ⋅ [(𝟏 + 𝒊𝒛)𝟑 − 𝒊 ⋅ (𝟏 − 𝒊𝒛)𝟑] = 𝟎 ⇔ (𝟏 + 𝒊𝒛)𝟑 = 𝟎 or  

(𝟏 + 𝒊𝒛)𝟑 − 𝒊 ⋅ (𝟏 − 𝒊𝒛)𝟑 = 𝟎 

The first equation has a triples solution: 𝒛 = 𝟏. 

The second equation: (𝟏 + 𝒊𝒛)𝟑 + 𝒊𝟑 ⋅ (𝟏 − 𝒊𝒛)𝟑 = 𝟎 ⇔ 

(𝟏 + 𝒊𝒛 + 𝒊(𝟏 − 𝒊𝒛))(𝟏 + 𝒊𝒛)𝟐 − 𝒊(𝟏 + 𝒊𝒛)(𝟏 − 𝒊𝒛) + 𝒊𝟐 ⋅ (𝟏 − 𝒊𝒛)𝟐) = 𝟎 ⇔ 

𝟏 + 𝒊 + 𝒛(𝟏 + 𝒊) = 𝟎 or 𝟏 + 𝟐𝒊𝒛 − 𝒛𝟐 − 𝒊 − 𝒊𝒛𝟐 − 𝟏 + 𝟐𝒊𝒛 + 𝒛𝟐 = 𝟎 ⇔ 

𝒛 + 𝟏 = 𝟎 or 𝒛𝟐 − 𝟒𝒛 + 𝟏 = 𝟎, 

with the roots: −𝟏 respectively: 𝟐 + √𝟑 and 𝟐 − √𝟑 



 
So the solutions of the equations are real numbers: −𝟏, 𝟐 + √𝟑, 𝟐 − √𝟑 and the complex 

number: 𝒊, imaginary unit 

1.c. General case: We have the equation: (𝟏 + 𝒊𝒛)𝟐𝒏 = 𝒊 ⋅ (𝟏 + 𝒛𝟐)𝒏 ⇔ 

⇔ (𝟏 + 𝒊𝒛)𝟐𝒏 = 𝒊(𝟏 + 𝒊𝒛)𝒏 ⋅ (𝟏 − 𝒊𝒛)𝒏 ⇔ (𝟏 + 𝒊𝒛)𝒏[(𝟏 + 𝒊𝒛)𝒏 − 𝒊(𝟏 − 𝒊𝒛)𝒏] = 𝟎 ⇔ 

(𝟏 + 𝒊𝒛)𝒏 = 𝟎 or (𝟏 + 𝒊𝒛)𝒏 − 𝒊(𝟏 − 𝒊𝒛)𝒏 = 𝟎 

From the first equation it follows the solution 𝒛 = 𝒊, which is a multiple solution of order 𝒏 

The second equation can be written: (
𝟏+𝒊𝒛

𝟏−𝒊𝒛
)

𝒏
= 𝒊, it is a binomial equation, it goes to the 

trigonometric form: (
𝟏+𝒊𝒛

𝟏−𝒊𝒛
)

𝒏
= 𝐜𝐨𝐬 (

𝝅

𝟐
) + 𝒊 𝐬𝐢𝐧 (

𝝅

𝟐
) and with the extraction of the radical of 

order 𝒏: 

𝟏 + 𝒊𝒛

𝟏 − 𝒊𝒛
= 𝐜𝐨𝐬 (

𝝅
𝟐

+ 𝟐𝒌𝝅

𝒏
) + 𝒊 𝐬𝐢𝐧 (

𝝅
𝟐

+ 𝟐𝒌𝝅

𝒏
) ⇔

𝟏 + 𝒊𝒛

𝟏 − 𝒊𝒛

= 𝐜𝐨𝐬 (
𝝅 + 𝟒𝒌𝝅

𝟐𝒏
) + 𝒊 𝐬𝐢𝐧 (

𝝅 + 𝟒𝒌𝝅

𝟐𝒏
) 

Solving for the 𝒛 variable, the result is obtained in the form: 

𝒛 = −
𝟏 − 𝐜𝐨𝐬 𝒕 − 𝒊 ⋅ 𝐬𝐢𝐧 𝒕

𝒊 ⋅ (𝟏 + 𝐜𝐨𝐬 𝒕 + 𝒊 ⋅ 𝐬𝐢𝐧 𝒕)
=

𝒊 ⋅ (𝟏 − 𝐜𝐨𝐬 𝒕 − 𝒊 ⋅ 𝐬𝐢𝐧 𝒕)

𝟏 + 𝐜𝐨𝐬 𝒕 + 𝒊 ⋅ 𝐬𝐢𝐧 𝒕
 

where 𝒕 =
𝝅+𝟒𝒌𝝅

𝟐𝒏
. Using trigonometric formulas and performing the calculations we arrive 

at the final result: 𝒛 = 𝐭𝐚𝐧
𝒕

𝟐
.  We obtain the solutions: 𝒛𝒌 = 𝐭𝐚𝐧 (

𝝅+𝟒𝒌𝝅

𝟒𝒏
),  

with 𝒌 = 𝟎, 𝟏, 𝟐, … , 𝒏 − 𝟏 (the number of solutions in this form is 𝒏). Particular cases: 

For 𝒏 = 𝟏 we have the solution: 𝐭𝐚𝐧
𝝅

𝟒
= 𝟏 

For 𝒏 = 𝟐 we have the solutions: 𝐭𝐚𝐧
𝝅

𝟖
= √𝟐 + 𝟏 and 𝐭𝐚𝐧

𝟓𝝅

𝟖
= √𝟐 − 𝟏 

For 𝒏 = 𝟑 we have the solutions: 𝐭𝐚𝐧
𝝅

𝟏𝟐
= 𝟐 − √𝟑, 𝐭𝐚𝐧

𝟓𝝅

𝟏𝟐
= 𝟐 − √𝟑 and 𝐭𝐚𝐧

𝟑𝝅

𝟒
= −𝟏 

Solution 2 by Marin Chirciu-Romania 

a. It checks (𝟏 + 𝒊 ⋅ 𝒊)𝟐𝒏 = 𝒊 ⋅ (𝟏 + 𝒊𝟐)𝒏 ⇔ (𝟏 − 𝟏)𝟐𝒏 = 𝒊 ⋅ (𝟏 − 𝟏)𝒏 ⇔ 𝟎𝟐𝒏 = 𝒊 ⋅ 𝟎𝒏 ⇔ 

⇔ 𝟎 = 𝟎 



 
b. For 𝒏 = 𝟏 we have the equation (𝟏 + 𝒊𝒛)𝟐 = 𝒊 ⋅ (𝟏 + 𝒛𝟐) ⇔ (𝟏 + 𝒊)𝒛𝟐 − 𝟐𝒊𝒛 + 𝒊 − 𝟏 =

𝟎, with 𝚫 = 𝟒. We obtain 𝒛𝟏 = 𝟐, 𝒛 + 𝟐 = 𝟐𝒊. 

For 𝒏 = 𝟐 we have the equation (𝟏 + 𝒊𝒛)𝟒 = 𝒊 ⋅ (𝟏 + 𝒛𝟐)𝟐 ⇔ 

⇔ (𝟏 − 𝒊)𝒛𝟒 − 𝟒𝒊𝒛𝟑 − (𝟔 + 𝟐𝒊)𝒛𝟐 + 𝟒𝒊𝒛 + 𝟏 − 𝒊 = 𝟎 ⇔ (𝒛 − 𝒊)𝟐(𝒛𝟐 + 𝟐𝒛 − 𝟏) = 𝟎 

We obtain 𝒛𝟏 = 𝒊, 𝒛𝟐,𝟑 = −𝟏 ± √𝟐 

For 𝒏 = 𝟑 we have the equation (𝟏 + 𝒊𝒛)𝟔 = 𝒊 ⋅ (𝟏 + 𝒛𝟐)𝟑 ⇔ 

⇔ (𝟏 + 𝒊)𝒛𝟔 − 𝟔𝒊𝒛𝟓 + (𝟑𝒊 − 𝟏𝟓)𝒛𝟒 + 𝟐𝟎𝒊𝒛𝟑 + (𝟑𝒊 + 𝟏𝟓)𝒛𝟐 − 𝟔𝒊𝒛 + 𝒊 − 𝟏 = 𝟎 

⇔ (𝒛 − 𝒊)𝟑(𝒛𝟑 − 𝟑𝒛𝟐 − 𝟑𝒛 + 𝟏) = 𝟎 ⇔ (𝒛 − 𝒊)𝟑(𝒛 + 𝟏)(𝒛𝟐 − 𝟒𝒛 + 𝟏) = 𝟎 

We obtain 𝒛𝟏 = 𝒊, 𝒛𝟐 = −𝟏, 𝒛𝟑,𝟒 = 𝟐 ± √𝟑 

c. For solving the equation (𝟏 + 𝒊𝒛)𝟐𝒏 = 𝒊 ⋅ (𝟏 + 𝒛𝟐)𝒏 we distinguish the cases: 

i. Case 1. 𝟏 + 𝒛𝟐 ≠ 𝟎 

(𝟏 + 𝒊𝒛)𝟐𝒏 = 𝒊 ⋅ (𝟏 + 𝒛𝟐)𝒏 ⇔ (
𝟏 + 𝟐𝒊𝒛 − 𝒛𝟐

𝟏 + 𝒛𝟐
)

𝒏

= 𝒊, 𝟏 + 𝒛𝟐 ≠ 𝟎 

Denoting 𝒘 =
𝟏+𝟐𝒊𝒛−𝒛𝟐

𝟏+𝒛𝟐
 we solve the equation 𝒘𝒏 = 𝒊 ⇔ 𝒘𝒏 = 𝟏 (𝐜𝐨𝐬

𝝅

𝟐
+ 𝒊 𝐬𝐢𝐧

𝝅

𝟐
), with 

the solutions  

𝒘𝒌 = 𝐜𝐨𝐬

𝝅
𝟐

+ 𝟐𝒌𝝅

𝒏
+ 𝒊 𝐬𝐢𝐧

𝝅
𝟐

+ 𝟐𝒌𝝅

𝒏
, 𝒌 = 𝟎, 𝒏 − 𝟏 

Going back to the notation we have: 

𝒘 =
𝟏+𝟐𝒊𝒛−𝒛𝟐

𝟏+𝒛𝟐
⇔ (𝟏 + 𝒘)𝒛𝟐 − 𝒊𝒛 + 𝒘 − 𝟏 = 𝟎,  with 𝚫 = 𝟑 − 𝟒𝒘𝟐 ⇒ 𝒛 = 𝒊 ± √𝟑 − 𝟒𝒘𝟐, 

where 

𝒘 = 𝐜𝐨𝐬

𝝅
𝟐

+ 𝟐𝒌𝝅

𝒏
+ 𝒊 𝐬𝐢𝐧

𝝅
𝟐

+ 𝟐𝒌𝝅

𝒏
, 𝒌 = 𝟎, 𝒏 − 𝟏 

ii. Case 2. 𝟏 + 𝒛𝟐 = 𝟎 

𝟏 + 𝒛𝟐 = 𝟎 ⇔ 𝒛𝟐 − 𝟏 ⇔ 𝒛 = ±𝒊 

The problem is completely solved. 


