ROMANIAN MATHEMATICAL MAGAZINE

UP. 554 We consider the equation: $(1+i z)^{2 n}=i \cdot\left(1+z^{2}\right)^{n}$, where $n \geq 1$ natural number and $\boldsymbol{i}^{2}=-1$.
a. Prove that the complex number \boldsymbol{i} is a solution of the equation for any $\boldsymbol{n} \geq 1$.
b. Solve the equation in the case $\boldsymbol{n}=1$ and in one of the cases $\boldsymbol{n}=2$ or $\boldsymbol{n}=3$.
c. Find the solution of the equation in the general case $\boldsymbol{n} \in \mathbb{N}^{*}$

Proposed by Adalbert Kovacs - Romania

Solution 1 by proposer

1. a. By replacing we can check that $z=i$ is a solution of the equation.
1.b. Case $n=1$: We have the equation: $(1+i z)^{2}=i \cdot\left(1+z^{2}\right)$, with the roots i and 1 . Case $n=2$. We use the decomposition: $\left(1+z^{2}\right)=(1+i z)(1-i z)$ the given equation becomes: $(1+i z)^{4}=i(1+i z)^{2} \cdot(1-i z)^{2} \Leftrightarrow(1+i z)^{2} \cdot\left[(1+i z)^{2}-i \cdot(1-i z)^{2}\right]=0$ $\Leftrightarrow(1+i z)^{2}=0$ and $(1+i z)^{2}=i \cdot(1-i z)^{2}=0$
The first equation has the double root: i
The second equation: $1+2 i z-z^{2}-i-2 z+i z^{2}=0 \Leftrightarrow$

$$
\Leftrightarrow(1-i) z^{2}+2(1-i) z-(1-i)=0 \Leftrightarrow
$$

$\Leftrightarrow z^{2}+2 z-1=0$, with the roots: $-1+\sqrt{2}$ and $-1-\sqrt{2}$.
Case $n=3$: We have the equation: $(1+i \cdot z)^{6}=i \cdot\left(1+z^{2}\right)^{3}$.
Using the decomposition: $\left(1+z^{2}\right)=(1+i z)(1-i z)$ the equation becomes:

$$
(1+i z)^{6}=i(1+i z)^{3} \cdot(1-i z)^{3}
$$

$\Leftrightarrow(1+i z)^{3} \cdot\left[(1+i z)^{3}-i \cdot(1-i z)^{3}\right]=0 \Leftrightarrow(1+i z)^{3}=0$ or

$$
(1+i z)^{3}-i \cdot(1-i z)^{3}=0
$$

The first equation has a triples solution: $\mathbf{z}=\mathbf{1}$.
The second equation: $(1+i z)^{3}+i^{3} \cdot(1-i z)^{3}=0 \Leftrightarrow$

$$
\left.(1+i z+i(1-i z))(1+i z)^{2}-i(1+i z)(1-i z)+i^{2} \cdot(1-i z)^{2}\right)=0 \Leftrightarrow
$$

$$
1+i+z(1+i)=0 \text { or } 1+2 i z-z^{2}-i-i z^{2}-1+2 i z+z^{2}=0 \Leftrightarrow
$$

$$
z+1=0 \text { or } z^{2}-4 z+1=0
$$

with the roots: -1 respectively: $2+\sqrt{3}$ and $2-\sqrt{3}$

ROMANIAN MATHEMATICAL MAGAZINE

So the solutions of the equations are real numbers: $-1,2+\sqrt{3}, 2-\sqrt{3}$ and the complex number: i, imaginary unit
1.c. General case: We have the equation: $(1+i z)^{2 n}=i \cdot\left(1+z^{2}\right)^{n} \Leftrightarrow$

$$
\Leftrightarrow(1+i z)^{2 n}=i(1+i z)^{n} \cdot(1-i z)^{n} \Leftrightarrow(1+i z)^{n}\left[(1+i z)^{n}-i(1-i z)^{n}\right]=0 \Leftrightarrow
$$

$$
(1+i z)^{n}=0 \text { or }(1+i z)^{n}-i(1-i z)^{n}=0
$$

From the first equation it follows the solution $z=i$, which is a multiple solution of order n The second equation can be written: $\left(\frac{1+i z}{1-i z}\right)^{n}=i$, it is a binomial equation, it goes to the trigonometric form: $\left(\frac{1+i z}{1-i z}\right)^{n}=\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)$ and with the extraction of the radical of order n :

$$
\begin{gathered}
\frac{1+i z}{1-i z}=\cos \left(\frac{\frac{\pi}{2}+2 k \pi}{n}\right)+i \sin \left(\frac{\frac{\pi}{2}+2 k \pi}{n}\right) \Leftrightarrow \frac{1+i z}{1-i z} \\
=\cos \left(\frac{\pi+4 k \pi}{2 n}\right)+i \sin \left(\frac{\pi+4 k \pi}{2 n}\right)
\end{gathered}
$$

Solving for the z variable, the result is obtained in the form:

$$
z=-\frac{1-\cos t-i \cdot \sin t}{i \cdot(1+\cos t+i \cdot \sin t)}=\frac{i \cdot(1-\cos t-i \cdot \sin t)}{1+\cos t+i \cdot \sin t}
$$

where $t=\frac{\pi+4 k \pi}{2 n}$. Using trigonometric formulas and performing the calculations we arrive at the final result: $z=\boldsymbol{\operatorname { t a n }} \frac{t}{2}$. We obtain the solutions: $z_{k}=\boldsymbol{\operatorname { t a n }}\left(\frac{\pi+4 k \pi}{4 n}\right)$,
with $k=0,1,2, \ldots, n-1$ (the number of solutions in this form is \boldsymbol{n}). Particular cases: For $n=1$ we have the solution: $\tan \frac{\pi}{4}=1$

For $n=2$ we have the solutions: $\tan \frac{\pi}{8}=\sqrt{2}+1$ and $\tan \frac{5 \pi}{8}=\sqrt{2}-1$ For $n=3$ we have the solutions: $\tan \frac{\pi}{12}=2-\sqrt{3}, \tan \frac{5 \pi}{12}=2-\sqrt{3}$ and $\tan \frac{3 \pi}{4}=-1$

Solution 2 by Marin Chirciu-Romania

a. It checks $(1+i \cdot i)^{2 n}=i \cdot\left(1+i^{2}\right)^{n} \Leftrightarrow(1-1)^{2 n}=i \cdot(1-1)^{n} \Leftrightarrow 0^{2 n}=i \cdot 0^{n} \Leftrightarrow$

$$
\Leftrightarrow \mathbf{0}=\mathbf{0}
$$

ROMANIAN MATHEMATICAL MAGAZINE

b. For $n=1$ we have the equation $(1+i z)^{2}=i \cdot\left(1+z^{2}\right) \Leftrightarrow(1+i) z^{2}-2 i z+i-1=$ 0 , with $\Delta=4$. We obtain $z_{1}=2, z+2=2 i$.
For $n=2$ we have the equation $(1+i z)^{4}=i \cdot\left(1+z^{2}\right)^{2} \Leftrightarrow$

$$
\Leftrightarrow(1-i) z^{4}-4 i z^{3}-(6+2 i) z^{2}+4 i z+1-i=0 \Leftrightarrow(z-i)^{2}\left(z^{2}+2 z-1\right)=0
$$

We obtain $z_{1}=i, z_{2,3}=-1 \pm \sqrt{2}$
For $n=3$ we have the equation $(1+i z)^{6}=i \cdot\left(1+z^{2}\right)^{3} \Leftrightarrow$

$$
\begin{gathered}
\Leftrightarrow(1+i) z^{6}-6 i z^{5}+(3 i-15) z^{4}+20 i z^{3}+(3 i+15) z^{2}-6 i z+i-1=0 \\
\Leftrightarrow(z-i)^{3}\left(z^{3}-3 z^{2}-3 z+1\right)=0 \Leftrightarrow(z-i)^{3}(z+1)\left(z^{2}-4 z+1\right)=0
\end{gathered}
$$

We obtain $z_{1}=i, z_{2}=-1, z_{3,4}=2 \pm \sqrt{3}$
c. For solving the equation $(1+i z)^{2 n}=i \cdot\left(1+z^{2}\right)^{n}$ we distinguish the cases:
i. Case 1. $1+z^{2} \neq 0$

$$
(1+i z)^{2 n}=i \cdot\left(1+z^{2}\right)^{n} \Leftrightarrow\left(\frac{1+2 i z-z^{2}}{1+z^{2}}\right)^{n}=i, 1+z^{2} \neq 0
$$

Denoting $w=\frac{1+2 i z-z^{2}}{1+z^{2}}$ we solve the equation $w^{n}=i \Leftrightarrow w^{n}=1\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$, with the solutions

$$
w_{k}=\cos \frac{\frac{\pi}{2}+2 k \pi}{n}+i \sin \frac{\frac{\pi}{2}+2 k \pi}{n}, k=\overline{0, n-1}
$$

Going back to the notation we have:
$w=\frac{1+2 i z-z^{2}}{1+z^{2}} \Leftrightarrow(1+w) z^{2}-i z+w-1=0$, with $\Delta=3-4 w^{2} \Rightarrow z=i \pm \sqrt{3-4 w^{2}}$, where

$$
w=\cos \frac{\frac{\pi}{2}+2 k \pi}{n}+i \sin \frac{\frac{\pi}{2}+2 k \pi}{n}, k=\overline{0, n-1}
$$

ii. Case 2. $1+z^{2}=0$

$$
1+z^{2}=0 \Leftrightarrow z^{2}-1 \Leftrightarrow z= \pm i
$$

The problem is completely solved.

