ROMANIAN MATHEMATICAL MAGAZINE

UP. 555 Find the solutions of the system:

$$
\begin{gathered}
\sqrt{8 x+5}+\sqrt{9 y+6}=\sqrt{8 x+9 y+29} \\
\sqrt{12 x+19}-\sqrt{3 y+15}=\sqrt{12 x+3 y-6}
\end{gathered}
$$

Proposed by Bela Kovacs - Romania

Solution 1 by proposer

We set the conditions of existence: The expressions under the radicals must be positive, both members of the equations must also be positive. Through consecutive squaring we obtain the following system:

$$
\begin{gathered}
\quad(8 x+5)(9 y+6)=81 \text { and }(12 x+19)(3 y+15)=400 \\
\Leftrightarrow(8 x+5)(3 y+2)=27 \text { and }(12 x+19)(3 y+15)=400
\end{gathered}
$$

We do the calculus: $24 x y+16 x+15 y=17$ and $36 x y+180 x+57 y=115$
We multiply with -3 , respectively with 2 :

$$
-72 x y-48 x-45 y=-51 \text { and } 72 x y+360 x+114 y=230
$$

By adding we obtain: $312 x+69 y=179$
We express the value of y that we substitute in the first equation: $y=\frac{179-312 x}{69}$

$$
\begin{gathered}
(8 x+5)\left(3 \cdot \frac{179-312 x}{69}+2\right)=27 \Leftrightarrow(8 x+5)\left(\frac{179-312 x}{23}+2\right)=27 \Leftrightarrow \\
(8 x+5)(225-312 x)=621 \Leftrightarrow(8 x+5)(75-104 x)=207 \Leftrightarrow \\
-832 x^{2}+600 x-520 x+375-207=0 \Leftrightarrow 832 x^{2}-80 x-168=0 \Leftrightarrow \\
208 x^{2}-20 x-42=0 \Leftrightarrow 104 x^{2}-10 x-21=0
\end{gathered}
$$

We solve the quadratic equation obtained: $\Delta_{1}=25+2184=2209=47^{2}$

$$
x_{1}=\frac{5+47}{104}=\frac{52}{104}=\frac{1}{2} \text { and } x_{2}=\frac{5-47}{104}=\frac{-42}{104}=\frac{-21}{52}
$$

We return for the corresponding y values.

$$
y_{1}=\frac{179-156}{69}=\frac{23}{69}=\frac{1}{3} \text { and } y_{2}=\frac{179-312\left(-\frac{21}{52}\right)}{69}=\frac{179+126}{69}=\frac{305}{69}
$$

ROMANIAN MATHEMATICAL MAGAZINE

By substitution, we find that the first result verifies the system, so it is a solution, and the second result does not verify the system, i.e. in the second equation, a negative number is obtained in the left member, so it is not a solution. So the only system solution is: $\left(\frac{1}{2} ; \frac{1}{3}\right)$

Solution 2 by Marin Chirciu-Romania

For admissible (x, y), the square is successively raised.

$$
\begin{gathered}
\left\{\begin{array} { c }
{ \sqrt { 8 x + 5 } + \sqrt { 9 y + 6 } = \sqrt { 8 x + 9 y + 2 9 } } \\
{ \sqrt { 1 2 x + 1 9 } - \sqrt { 3 y + 1 5 } = \sqrt { 1 2 x + 3 y - 6 } }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
\sqrt{8 x+5} \cdot \sqrt{9 y+6}=9 \\
\sqrt{12 x+19} \cdot \sqrt{3 y+15}=20
\end{array} \Leftrightarrow\right.\right. \\
\Leftrightarrow\left\{\begin{array} { c }
{ (8 x + 5) \cdot (9 y + 6) = 8 1 } \\
{ (1 2 x + 1 9) \cdot (3 y + 1 5) = 4 0 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
(8 x+5) \cdot(3 y+2)=27 \\
(12 x+19) \cdot(3 y+15)=400
\end{array} \Leftrightarrow\right.\right. \\
\Leftrightarrow\left\{\begin{array} { c }
{ 2 4 x y + 1 6 x + 1 5 y = 1 7 } \\
{ 3 6 x y + 1 8 0 x + 5 7 y = 1 1 5 }
\end{array} \Leftrightarrow \left\{\begin{array}{c}
24 x y+16 x+15 y=17 \\
312 x+69 y=179
\end{array}\right.\right.
\end{gathered}
$$

Replacing $y=\frac{179-312 x}{69}$ in $24 x y+16 x+15 y=17$ we obtain the equation:
$936 x^{2}-90 x-189=0$ with the solutions $x_{12}=\frac{45 \pm 423}{936} \Rightarrow x_{1}=\frac{1}{2}$ and $x_{2}=\frac{-21}{52}$
We obtain $(x, y)=\left(\frac{1}{2}, \frac{1}{3}\right)$ also checks $(x, y)=\left(\frac{-21}{52}, \frac{305}{69}\right)$ doesn't check

$$
\sqrt{12 x+19}-\sqrt{3 y+15} \geq 0
$$

We deduce that $(x, y)=\left(\frac{1}{2}, \frac{1}{3}\right)$ is the unique solution of the system.

