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     In The American Mathematical Monthly (AMM), Vol. 129, Nr. 2, February, 2022, was 

proposed the following problem: 

     12303. Proposed by George Apostolopoulos, Messolonghi, Greece. Let R  and r  be the 

circumradius and inradius, respectively, of triangle ABC . Let ,D E , and F  be chosen on sides 

BC , CA , and AB  so that AD , BE , and CF  bisect the angles of ABC . Prove 
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          Our purpose is to present two reinforcements of the above inequality. 

     I. From bisector theorem we have 
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 . From cosine law we deduce that 
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Since )(3 zyxzyx  , 0,,  zyx  we get 
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. We denote cbas 2 . 

Since, Rrrsab
cyc

422  ,   abcsabssscsba
cyccyccyc

2428)2()( 23  

 Rrssab
cyc

42 )2(2)24(2 2222 rRrssRrRrrss   and 

)63(2 223 Rrrssa
cyc

 , then by the last inequality we get: 
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 . Using Gerretsen inequality, i.e. 22 516 rRrs   we obtain: 
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We will prove that the inequality from above improves the inequality from the problem 12303. 

Indeed, if we denote rRx / , 2x  we have successively that 
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Hence, we obtained the following strengthening of the inequality from AMM: 
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   II. Next we will get another reinforcement of inequality from the AMM problem. 

Let 322

1 )2(2102 rRRrRrRs  . By Blundon theorem we know that ss 1 , so 
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Now, we shall prove that 
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 232 )2(21229)211(1216  xxxxxx ,  or after some algebra equivalent to 

  0)2()6(314153)2(3 2  xxxxxxx , 2x , which is true since 

2,019610682012,0)6)(2(9)14153( 2222  xxxxxxxxx . 

Therefore, we obtain the following refinement 
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