ABOUT THE PROBLEM 12303-AMM

By Marius Drăgan and Neculai Stanciu

Abstract. This paper presents two refinements of an inequality proposed in The American Mathematical

Monthly.
Keywords: geometric inequality.
MSC: 51M16, 26D05

In The American Mathematical Monthly (AMM), Vol. 129, Nr. 2, February, 2022, was proposed the following problem:
12303. Proposed by George Apostolopoulos, Messolonghi, Greece. Let R and r be the circumradius and inradius, respectively, of triangle $A B C$. Let D, E, and F be chosen on sides $B C, C A$, and $A B$ so that $A D, B E$, and $C F$ bisect the angles of $A B C$. Prove

$$
\frac{F D}{A B+B C}+\frac{D E}{B C+C A}+\frac{E F}{C A+A B} \leq \frac{3}{8}\left(1+\frac{R}{2 r}\right)
$$

Our purpose is to present two reinforcements of the above inequality.
I. From bisector theorem we have $\frac{B D}{D C}=\frac{c}{b}$, so $B D=\frac{a c}{b+c}$. From cosine law we deduce that

$$
\begin{gathered}
F D=\sqrt{B F^{2}+B D^{2}-2 B F \cdot B D \cdot \cos B}=\sqrt{\left(\frac{a c}{a+b}\right)^{2}+\left(\frac{a c}{b+c}\right)^{2}-\frac{2 a^{2} c^{2}}{(a+b)(b+c)} \cdot \frac{a^{2}+c^{2}-b^{2}}{2 a c}}= \\
=\sqrt{\frac{a b c \cdot\left(-a^{3}+b^{3}-c^{3}-a^{2} b+a^{2} c+a b^{2}+a c^{2}+b^{2} c-b c^{2}+3 a b c\right)}{(a+b)^{2}(b+c)^{2}}} .
\end{gathered}
$$

Since $\sqrt{x}+\sqrt{y}+\sqrt{z} \leq \sqrt{3(x+y+z)}, \forall x, y, z>0$ we get

$$
\sum_{c y c} \frac{F D}{A B+B C}=\frac{\sqrt{a b c}}{\prod_{c y c}(a+b)} \sum_{c y c} \sqrt{-a^{3}+b^{3}-c^{3}-a^{2} b+a^{2} c+a b^{2}+a c^{2}+b^{2} c-b c^{2}+3 a b c} \leq
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\leq \frac{\sqrt{a b c}}{\prod_{c y c}(a+b)} \sqrt{3\left(-a^{3}-b^{3}-c^{3}+a^{2} b+a b^{2}+b^{2} c+b c^{2}+c^{2} a+c a^{2}\right)+9 a b c}=
$$

$$
=\frac{\sqrt{a b c}}{\prod_{c y c}(a+b)} \sqrt{3\left(-\sum_{c y c} a^{3}+\prod_{c y c}(a+b)+7 a b c\right)} . \text { We denote } 2 s=a+b+c \text {. }
$$

Since, $\sum_{c y c} a b=s^{2}+r^{2}+4 R r, \prod_{c y c}(a+b)=\prod_{c y c}(2 s-c)=8 s^{3}-2 s \cdot 4 s^{2}+\sum_{c y c} a b \cdot 2 s-a b c=$

$$
=\sum_{c y c} a b \cdot 2 s-4 R r s=2 s\left(s^{2}+r^{2}+4 R r-2 R r\right)=2 s\left(s^{2}+2 R r+r^{2}\right) \text { and }
$$

$$
\sum_{c y c} a^{3}=2 s\left(s^{2}-3 r^{2}-6 R r\right), \text { then by the last inequality we get: }
$$

$$
\sum_{c y c} \frac{F D}{A B+B C} \leq \frac{\sqrt{4 R r s}}{2 s\left(s^{2}+2 R r+r^{2}\right)} \sqrt{3\left[-2 s\left(s^{2}-6 R r-3 r^{2}\right)+2 s\left(s^{2}+2 R r+r^{2}\right)+28 R r s\right]}=
$$

$$
=\frac{\sqrt{12 R r^{2}(11 R+2 r)}}{s^{2}+2 R r+r^{2}} \text {. Using Gerretsen inequality, i.e. } s^{2} \geq 16 R r-5 r^{2} \text { we obtain: }
$$

$$
\sum_{\text {cyc }} \frac{F D}{A B+B C} \leq \frac{\sqrt{12 R r^{2}(11 R+2 r)}}{18 R r-4 r^{2}}=\frac{\sqrt{3 R(11 R+2 r)}}{9 R-2 r}
$$

We will prove that the inequality from above improves the inequality from the problem 12303.
Indeed, if we denote $x=R / r, x \geq 2$ we have successively that

$$
\frac{\sqrt{3 R(11 R+2 r)}}{9 R-2 r} \leq \frac{3}{8}\left(1+\frac{R}{2 r}\right) \Leftrightarrow \frac{\sqrt{3 x(11 x+2)}}{9 x-2} \leq \frac{3}{8}\left(1+\frac{x}{2}\right) \Leftrightarrow
$$

$\Leftrightarrow 3 \cdot 256 \cdot(11 x+2) \leq 9(x+2)^{2}(9 x-2)^{2} \Leftrightarrow 3(x-2)\left(243 x^{3}+1350 x^{2}+436 x-24\right) \geq 0$, true.
Hence, we obtained the following strengthening of the inequality from AMM:

$$
\sum_{c y c} \frac{F D}{A B+B C} \leq \frac{\sqrt{12 R r^{2}(11 R+2 r)}}{s^{2}+2 R r+r^{2}} \leq \frac{\sqrt{3 R(11 R+2 r)}}{9 R-2 r} \leq \frac{3}{8}\left(1+\frac{R}{2 r}\right),(*) .
$$

ROMANIAN MATHEMATICAL MAGAZINE

II. Next we will get another reinforcement of inequality from the AMM problem. Let $s_{1}=\sqrt{2 R^{2}+10 R r-r^{2}-2 \sqrt{R(R-2 r)^{3}}}$. By Blundon theorem we know that $s_{1} \leq s$, so

$$
\sum_{c y c} \frac{F D}{A B+B C} \leq \frac{\sqrt{12 R r^{2}(11 R+2 r)}}{s^{2}+2 R r+r^{2}} \leq \frac{\sqrt{12 R r^{2}(11 R+2 r)}}{2 R^{2}+12 R r-2 \sqrt{R(R-2 r)^{3}}} .
$$

Now, we shall prove that

$$
\frac{\sqrt{12 R r^{2}(11 R+2 r)}}{2 R^{2}+12 R r-2 \sqrt{R(R-2 r)^{3}}} \leq \frac{3}{4} \Leftrightarrow \frac{\sqrt{12 x(11 x+2)}}{2 x^{2}+12 x-2 \sqrt{x(x-2)^{3}}} \leq \frac{3}{4} \Leftrightarrow
$$

$\Leftrightarrow 16 \cdot 12 x(11 x+2) \leq 9\left(2 x^{2}+12 x-2 \sqrt{x(x-2)^{3}}\right)^{2}$, or after some algebra equivalent to

$$
3 x(x-2)\left(3 x^{2}+15 x+14-3(x+6) \sqrt{x(x-2)}\right) \geq 0, \forall x \geq 2, \text { which is true since }
$$

$$
\left(3 x^{2}+15 x+14\right)^{2}-9 x(x-2)(x+6)^{2} \geq 0, \forall x \geq 2 \Leftrightarrow 201 x^{2}+1068 x+196 \geq 0, \forall x \geq 2
$$

Therefore, we obtain the following refinement

$$
\sum_{c y c} \frac{F D}{A B+B C} \leq \frac{\sqrt{12 R r^{2}(11 R+2 r)}}{s^{2}+2 R r+r^{2}} \leq \frac{\sqrt{12 R r^{2}(11 R+2 r)}}{2 R^{2}+12 R r-2 \sqrt{R(R-2 r)^{3}}} \leq \frac{3}{4} \leq \frac{3}{8}\left(1+\frac{R}{2 r}\right),\left({ }^{* *}\right) .
$$

