ROMANIAN MATHEMATICAL MAGAZINE

J.2356 If $m \geq 0$ and $M \in Int(\Delta ABC)$, $d_a = d(M,BC)$, $d_b = d(M,CA)$, $d_c = d(M,AB)$, then

$$\frac{a^{m+1}b}{(xr+yd_b)^m} + \frac{b^{m+1}c}{(xr+yd_c)^m} + \frac{c^{m+1}a}{(xr+yd_a)^m} \ge \frac{2^{m+2}(\sqrt{3})^{m+1}}{(x+y)^m} \cdot F.$$

Proposed by D.M.Bătinețu-Giurgiu – Romania

Solution by Titu Zvonaru-Romania

We have
$$(a+b+c)r = 2F$$
, $ad_a + bd_b + cd_c = 2F$.

Applying Radon's inequality and Gordon's inequality $ab+bc+ca \geq 4\sqrt{3}F$

it follows that:

$$\begin{split} \frac{a^{m+1}b}{(xr+yd_b)^m} + \frac{b^{m+1}c}{(xr+yd_c)^m} + \frac{c^{m+1}a}{(xr+yd_a)^m} &= \\ &= \frac{a^{m+1}b^{m+1}}{(xbr+ybd_b)^m} + \frac{b^{m+1}c^{m+1}}{(xcr+ycd_c)^m} + \frac{c^{m+1}a^{m+1}}{(xar+yad_a)^m} \geq \frac{(ab+bc+ca)^{m+1}}{(2xF+2yF)^m} \geq \\ &\geq \frac{\left(4\sqrt{3}F\right)^{m+1}}{(x+y)^m(2F)^m} \cdot F = \frac{2^{m+2}\left(\sqrt{3}\right)^{m+1}}{(x+y)^m} \cdot F. \end{split}$$

Equality holds if and only if $\triangle ABC$ is equilateral.