ROMANIAN MATHEMATICAL MAGAZINE

J.2396 If I – incenter then in $\triangle ABC$ holds:

$$2\sqrt{3}r \le \sqrt{a \cdot AI^2 + b \cdot BI^2 + c \cdot CI^2} \le R\sqrt{3}$$

Proposed by George Apostolopoulos – Greece

Solution by Titu Zvonaru-Romania

Since
$$AI = \frac{bc\cos^2}{s}$$
, we obtain:
 $a \cdot AI^2 + b \cdot BI^2 + c \cdot CI^2 = \frac{abc(s-a)}{s} + \frac{abc(s-b)}{s} + \frac{abc(s-c)}{s} = abc$.
We have $24\sqrt{3}r^3 \le abc \Leftrightarrow 6\sqrt{3}r^2 \le Rs$,

which is true because $3\sqrt{3}r \le s$ (item 5. 11 from [1]) and $2r \le R$.

The right inequality is equivalent to $abc \leq 3\sqrt{3}R^3 \Leftrightarrow 4rs \leq 3\sqrt{3}R^2$,

which is true because $2s \le 3\sqrt{3R}$ (item 5.3 from [1]) and $2r \le R$.

Equality holds if and only if $\triangle ABC$ is equilateral.

[1] O. Bottema, Geometric Inequalities, Groningen 1969