ROMANIAN MATHEMATICAL MAGAZINE

J. 2396 If I - incenter then in $\triangle A B C$ holds:

$$
2 \sqrt{3} r \leq \sqrt{a \cdot A I^{2}+b \cdot B I^{2}+c \cdot C I^{2}} \leq R \sqrt{3}
$$

Proposed by George Apostolopoulos - Greece

Solution by Titu Zvonaru-Romania

$$
\text { Since } A I=\frac{b c \cos \frac{A}{2}}{s} \text {, we obtain: }
$$

$$
a \cdot A I^{2}+b \cdot B I^{2}+c \cdot C I^{2}=\frac{a b c(s-a)}{s}+\frac{a b c(s-b)}{s}+\frac{a b c(s-c)}{s}=a b c .
$$

$$
\text { We have } 24 \sqrt{3} r^{3} \leq a b c \Leftrightarrow 6 \sqrt{3} r^{2} \leq R s
$$

which is true because $3 \sqrt{3} r \leq s$ (item 5.11 from [1]) and $2 r \leq R$.
The right inequality is equivalent to $a b c \leq 3 \sqrt{3} R^{3} \Leftrightarrow 4 r s \leq 3 \sqrt{3} R^{2}$, which is true because $2 s \leq 3 \sqrt{3} R$ (item 5.3 from [1]) and $2 r \leq R$.

Equality holds if and only if $\triangle A B C$ is equilateral.
[1] O. Bottema, Geometric Inequalities, Groningen 1969

