ROMANIAN MATHEMATICAL MAGAZINE

J. 2412 Prove that 5 divide $n\left(4 n^{2}+1\right)\left(6 n^{2}+1\right)$, for any natural number n.

Proposed Neculai Stanciu - Romania

Solution by Titu Zvonaru-Romania
For $n=5 k$, it is obvious that 5 divide $n\left(4 n^{2}+1\right)\left(6 n^{2}+1\right)$.
For $n=5 k \pm 1$, we have $4 n^{2}+1=4(5 k \pm 1)^{2}+1=5\left(20 k^{2} \pm 8 k+1\right)$.
For $n=5 k \pm 2$, we have $6 n^{2}+1=6(5 k \pm 2)^{2}+1=5\left(30 k^{2} \pm 24 k+5\right)$. It follows that 5 divide $n\left(4 n^{2}+1\right)\left(6 n^{2}+1\right)$.

