ROMANIAN MATHEMATICAL MAGAZINE

J.2417 If $x \ge 0$ and in $\triangle ABC$, $A_1 \in BC$, $B_1 \in CA$, $C_1 \in AB$ such that

$$BA_1 = xA_1C$$
, $CB_1 = xB_1A$, $AC_1 = xC_1B$, then:

$$[A_1B_1C_1] = \frac{x^2 - x + 1}{(x+1)^2} \cdot F \ge \frac{x}{(x+1)^2} \cdot F$$

Proposed by D.M.Bătinețu-Giurgiu - Romania

Solution by Titu Zvonaru-Romania

By
$$BA_1 = xA_1C_1BA_1 + A_1C = a_1$$
, we get:

$$BA_1 = \frac{ax}{x+1}$$
, $A_1C = \frac{a}{x+1}$, and similar $CB_1 = \frac{bx}{x+1}$, $B_1A = \frac{b}{x+1}$, $AC_1 = \frac{cx}{x+1}$, $C_1B = \frac{c}{x+1}$.

We obtain $[AB_1C_1] = \frac{AB_1AC_1\sin A}{2} = \frac{bcx\sin A}{2(x+1)^2} = \frac{x}{(x+1)^2} \cdot F$. It follows that

$$[A_1B_1C_1] = [ABC] - [AB_1C_1] - [BC_1A_1] - [CA_1B_1] = F - \frac{3x}{(x+1)^2} \cdot F$$

$$= \frac{x^2 - x + 1}{(x+1)^2} \cdot F.$$

By AM-GM we have $x^2-x+1=x^2+1-x\geq 2x-x=x$. It results that

$$[A_1B_1C_1] = \frac{x^2-x+1}{(x+1)^2} \cdot F \ge \frac{x}{(x+1)^2} \cdot F.$$

Equality holds if and only if x=1, that is if and only if $\Delta A_1B_1C_1$ is the median triangle of ΔABC .