ROMANIAN MATHEMATICAL MAGAZINE

J. 2424 Find all $(m, n, p) \in N \times N \times N$ such that:

$$
\begin{aligned}
& m+n+p+m n+n p+p m+m n p=35 \\
& (p+2) \cdot p^{p}=(p+2)^{p} \\
& \quad \text { Proposed by Daniel Sitaru - Romania }
\end{aligned}
$$

Solution by Titu Zvonaru-Romania

Writing the second equation as $p+2=\left(1+\frac{2}{p}\right)^{p}$,
we deduce $1+\frac{2}{p}$ must be a natural number.
We get $p \in\{1,2\}$. The first equation is equivalent to

$$
\mathbf{1}+\boldsymbol{m}+n+p+m n+n p+p m+m n p=36
$$

$$
m+1+n(m+1)+p(m+1)+n p(m+1)=36
$$

$$
(m+1)(n+1)(p+1)=36
$$

For $p=1$ yields $(m+1)(n+1)=18$, hence

$$
(m, n, p)=(0,17,1),(1,8,1),(2,5,1),(5,2,1),(8,1,1),(17,0,1)
$$

$$
\text { For } p=2 \text { yields }(m+1)(n+1)=12 \text {, hence }
$$

$$
(m, n, p)=(0,11,2),(1,5,2),(2,3,2),(3,2,2),(5,1,2),(11,0,2)
$$

