## ROMANIAN MATHEMATICAL MAGAZINE

J. 2434 If $a, b, c>0, a b c=1$ then

$$
\left(a^{3}+1\right)\left(b^{3}+1\right)\left(c^{3}+1\right) \geq\left(a+\frac{1}{a}\right)\left(b+\frac{1}{b}\right)\left(c+\frac{1}{c}\right)
$$

Proposed by Ilir Demiri - Azerbaijan

## Solution by Titu Zvonaru-Romania

Since $a b c=1$, there are positive real numbers $x, y, z$ such that $a=\frac{x}{y}, b=\frac{y}{z}, c=\frac{z}{x}$.
The given inequality is echivalent to

$$
\begin{gathered}
\left(x^{3}+y^{3}\right)\left(y^{3}+z^{3}\right)\left(z^{3}+x^{3}\right) \geq x y z\left(x^{2}+y^{2}\right)\left(y^{2}+z^{2}\right)\left(z^{2}+x^{2}\right) \\
\sum_{\text {sym }} x^{6} y^{3} \geq \sum_{\text {sym }} x^{5} y^{3} z
\end{gathered}
$$

which is true by Muirhead's inequality $(6,3,0) \geq(5,3,1)$. Equality holds if and only if $x=y=z$, that is if and only if $a=b=c=1$.

