ROMANIAN MATHEMATICAL MAGAZINE

J.2476 If x, y, z > 0, then in $\triangle ABC$ holds:

$$\frac{ae^{x^2}}{(y+z)h_a} + \frac{be^{y^2}}{(z+x)h_b} + \frac{ce^{z^2}}{(x+y)h_c} > 2\sqrt{3}$$

Proposed by D.M.Bătinețu-Giurgiu, Rareș Tudorașcu - Romania

Solution by Titu Zvonaru-Romania

For t > 0 we consider the function $f(t) = e^t - 1 - t$.

We have $f'(t) = e^t - 1$, $f''(t) = e^t > 0$. Yields that f' is an increasing function,

hence f'(t) > f'(0) = 0. We deduce that the function f is increasing; then f(t) > f(0) = 0.

For
$$t=x^2$$
, by $AM-GM$ it results that $e^{x^2}>1+x^2\geq 2x$ (1)

We have $ah_a=bh_b=ch_c=2F$. Applying inequality (1) and the Tsintsifas'

inequality
$$\frac{x}{y+z}a^2 + \frac{y}{z+x}b^2 + \frac{z}{x+y}c^2 \ge 2\sqrt{3F}$$
, it follows that

$$\frac{ae^{x^2}}{(y+z)h_a} + \frac{be^{y^2}}{(z+x)h_b} + \frac{ce^{z^2}}{(x+y)h_c} = \frac{a^2e^{x^2}}{(y+z)ah_a} + \frac{b^2e^{y^2}}{(z+x)bh_b} + \frac{c^2e^{z^2}}{(x+y)ch_c} >$$

$$> \frac{1}{2F} \left(\frac{2xa^2}{y+z} + \frac{2yb^2}{z+x} + \frac{2zc^2}{x+y} \right) = \frac{1}{F} \left(\frac{x}{y+z} a^2 + \frac{y}{z+x} b^2 + \frac{z}{x+y} c^2 \right) \ge \frac{1}{F} \left(2\sqrt{3}F \right) = 2\sqrt{3}$$