
 
J.2505 Let by  𝒏 ∈ 𝑵, 𝒏 ≥ 𝟐. Prove that: 
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Proposed by Carina Viespescu, Gabriela Militaru-Cismaru-Romania 

   Solution by Titu Zvonaru-Romania 

We prove by induction. 

For 𝒏 = 𝟐 we have to prove that  
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, which is true. 

Suppose that 
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We have to prove that 
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Using (𝟏) we obtain 
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It remains to prove 
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(𝒏 − 𝟏)(𝒏 + 𝟑)(𝟐𝒏 + 𝟏) + (𝒏 + 𝟏)(𝒏 + 𝟑) > 𝒏(𝒏 + 𝟐)(𝟐𝒏 + 𝟏) 

𝟐𝒏𝟑 + 𝟒𝒏𝟐 − 𝟔𝒏 + 𝒏𝟐 + 𝟐𝒏 − 𝟑 + 𝒏𝟐 + 𝟒𝒏 + 𝟑 > 𝟐𝒏𝟑 + 𝟒𝒏𝟐 + 𝒏𝟐 + 𝟐𝒏 

𝒏𝟐 > 𝟐𝒏, 

obviously true. It follows that (𝟐) is true; by induction it results that (𝟏) is true. 

 


