ROMANIAN MATHEMATICAL MAGAZINE

J. 2505 Let by $n \in N, n \geq 2$. Prove that:

$$
\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2 n-1}>\frac{n-1}{n+2}
$$

Proposed by Carina Viespescu, Gabriela Militaru-Cismaru-Romania

Solution by Titu Zvonaru-Romania

We prove by induction.
For $n=2$ we have to prove that $\frac{1}{3}>\frac{1}{4}$, which is true.

Suppose that

$$
\begin{equation*}
\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2 n-1}>\frac{n-1}{n+2} \tag{1}
\end{equation*}
$$

We have to prove that

$$
\begin{gather*}
\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2 n-1}+\frac{1}{2 n+1}>\frac{n}{n+3} \tag{2}\\
\text { Using (1) we obtain }
\end{gather*}
$$

$$
\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2 n-1}+\frac{1}{2 n+1}>\frac{n-1}{n+2}+\frac{1}{2 n+1}
$$

It remains to prove

$$
\begin{gathered}
\frac{n-1}{n+2}+\frac{1}{2 n+1}>\frac{n}{n+3} \\
(n-1)(n+3)(2 n+1)+(n+1)(n+3)>n(n+2)(2 n+1) \\
2 n^{3}+4 n^{2}-6 n+n^{2}+2 n-3+n^{2}+4 n+3>2 n^{3}+4 n^{2}+n^{2}+2 n \\
n^{2}>2 n,
\end{gathered}
$$

obviously true. It follows that (2) is true; by induction it results that (1) is true.

